994 resultados para electrical detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atmospheric aerosol particles have a strong impact on the global climate. A deep understanding of the physical and chemical processes affecting the atmospheric aerosol climate system is crucial in order to describe those processes properly in global climate models. Besides the climatic effects, aerosol particles can deteriorate e.g. visibility and human health. Nucleation is a fundamental step in atmospheric new particle formation. However, details of the atmospheric nucleation mechanisms have remained unresolved. The main reason for that has been the non-existence of instruments capable of measuring neutral newly formed particles in the size range below 3 nm in diameter. This thesis aims to extend the detectable particle size range towards close-to-molecular sizes (~1nm) of freshly nucleated clusters, and by direct measurement obtain the concentrations of sub-3 nm particles in atmospheric environment and in well defined laboratory conditions. In the work presented in this thesis, new methods and instruments for the sub-3 nm particle detection were developed and tested. The selected approach comprises four different condensation based techniques and one electrical detection scheme. All of them are capable to detect particles with diameters well below 3 nm, some even down to ~1 nm. The developed techniques and instruments were deployed in the field measurements as well as in laboratory nucleation experiments. Ambient air studies showed that in a boreal forest environment a persistent population of 1-2 nm particles or clusters exists. The observation was done using 4 different instruments showing a consistent capability for the direct measurement of the atmospheric nucleation. The results from the laboratory experiments showed that sulphuric acid is a key species in the atmospheric nucleation. The mismatch between the earlier laboratory data and ambient observations on the dependency of nucleation rate on sulphuric acid concentration was explained. The reason was shown to be associated in the inefficient growth of the nucleated clusters and in the insufficient detection efficiency of particle counters used in the previous experiments. Even though the exact molecular steps of nucleation still remain an open question, the instrumental techniques developed in this work as well as their application in laboratory and ambient studies opened a new view into atmospheric nucleation and prepared the way for investigating the nucleation processes with more suitable tools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors present a review of recent developments in the detection of biomolecular interactions with field-effect devices. Ion-sensitive field-effect transistors (ISFETs) and enzyme field-effect transistors (EnFETs), based on polycrystalline silicon (poly-Si) TFTs, are discussed. Label-free electrical detection of DNA hybridization has been achieved by a new method, by using MOS capacitors or poly-Si TFTs. In principle, the method can be extended to other chemical or biochemical systems, such as proteins and cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.