977 resultados para eastern Asian endemic genera
Resumo:
苔藓是高等植物(有胚植物或陆地植物)中最原始的一类,但种类却丰富多样,其形态和生长环境的多样化程度高于蕨类和裸子植物,且对极端环境的忍耐力更强,分布范围也更广。“特有”是一个地理概念,它是相对广布而言,当一个类群的分布范围有一定的限制时即为特有现象。“东亚特有”是指分布范围主要局限于中国,朝鲜,日本和蒙古等,向北可及俄罗斯远东地区,少数可分布至中国南部相邻地区的植物类群。东亚地区主要以温带植物区系为主,但也包含一些热带植物区系成分,还因为第四纪以来受冰川活动影响较少,因此植物种类非常丰富。东亚地区也是苔藓植物的多样性中心之一,这里有较多的特有成分。在我国总共分布有苔藓植物东亚特有属35属,其中苔类5属,藓类30属。长期以来,特有成分始终引起人们的极大关注,不仅是因为其在植物地理学上的重要性,还因为特有类群中包含了孓遗类群,往往系统位置比较关键,此外,大部分特有类群对人为干扰比较敏感,对其保护就愈加重要,因为它在这个地区的消失就意味着一个类群的灭绝。 我国对苔藓植物东亚特有类群已有较好的认识,在前人知识积累的基础之上,我们期望通过分子系统学的方法,开展对东亚特有苔藓属的研究,逐步揭开特有属植物的神秘面纱,最终在系统树上找到它们各自应该属于自己的位置。 在本次研究中,我们总共得到十一个苔藓植物东亚特有属的新鲜材料。在实验室中我们对这十一个特有属叶绿体和核的六个基因(叶绿体atpB, rbcL, cp-SSU, cp-LSU 和核18S,26S rDNA)进行了测序,并在此基础之上,构建了来自苔藓植物106个属上述六个基因的联合矩阵,并对它们进行了系统学分析。本文所选十一个特有属中除三个苔类属和一个线齿藓类的属之外,其它七个特有属都属于侧蒴藓类。根据近几年的研究结果,侧蒴藓类中灰藓目被认为是起源自一次快速辐射演化,灰藓目各科之间的关系以及各科的范围都很难确定。即便本实验测序一万多bp,这一支之内的关系仍不能解决。 在以上结果的基础上,本文对线齿藓类的树发藓属(Microdendron)进行了较为详细的研究,我们用最大简约法分析了金发藓目15属,33种的18S, rbcL和trnL-F序列的联合矩阵。对树发藓属的微形态进行了电镜扫描。形态和分子数据的分析结果表明,这个特有属在属级水平是不成立的,它仅是小金发藓属的一个种。此结果支持将这个东亚特有属降为种的等级。此外,本文还对囊绒苔属(Trichocoleopsis)和新绒苔属(Neotrichocolea)的系统位置做了比较详细的研究。我们分别分析了一个苔类植物57属的四基因(cp-SSU, cp-LSU, atpB and rbcL)矩阵和一个苔类植物24属的九基因(cp-SSU, cp-LSU, atpB, psbA, rps4, rbcL, 18S, 26S and nad5)联合矩阵,结果显示囊绒苔属和新绒苔属互为姐妹群关系,而毛叶苔属(Ptilidium)又是它们二者的姐妹群。研究结果支持了囊绒苔属和新绒苔属组成新绒苔科(Neotrichocoleaceae),而不同于前人的观点:将上述两属放置于毛叶苔科(Ptilidiaceae)、绒苔科(Trichocoleaceae)或多囊苔科(Lepidolaenaceae)。另外值得注意的是这两个特有属和毛叶苔属组成的一支位于叶苔类(Leafy liverwort)中“Leafy I”和“Leafy II”两大支之间,但这一支确切的系统位置没有解决,仍有待于进一步研究。 除此之外,本文还利用GenBank中的数据对东亚特有属日鳞苔属(Nipponolejeunea)和耳坠苔属(Ascidiota)(未获得实验材料)进行了初步的系统学分析。结果表明传统上放在细鳞苔科的日鳞苔属与毛耳苔科的毛耳苔属(Jubula)为姐妹群关系,建议将日鳞苔属置于毛耳苔科;耳坠苔属是光萼苔科的成员,属的分类等级是合理的。 最后本文利用罚分似然法,选取多个化石作为标定点,对来自苔藓植物主要类群及其它陆地植物共115个类群5个基因(atpB, rbcL, cp-SSU, cp-LSU, 18S)的矩阵进行了分子钟的分析,初步估算11个东亚特有属的分化时间。
Resumo:
Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily "Danioninae" did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the "Leuciscinae" in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.
Resumo:
The phylogenetic structure of Asclepiadoideae (Apocynaceae) has been elucidated at the tribal and subtribal levels in the last two decades. However, to date, the systematic positions of seven Asian genera, Cosmostigma, Graphistemma, Holostemma, Pentasachme, Raphistemma, Seshagiria and Treutlera, have not been investigated. In this study, we examine the evolutionary relationships among these seven small enigmatic Asian genera and clarify their positions in Asclepiadoideae, using a combination of plastid sequences of rbcL, rps16, trnL and trnL- F regions. Cosmostigma and Treutlera are resolved as members of the non-Hoya clade of Marsdenieae with strong support (maximum parsimony bootstrap support value BSMP = 96, maximum likelihood bootstrap support value BSML = 98, Bayesian-inferred posterior probability PP = 1.0). Pentasachme is resolved as sister of Stapeliinae to Ceropegieae with moderate support (BSMP = 64, BSML = 66, PP = 0.94). Graphistemma, Holostemma, Raphistemma and Seshagiria are all nested in the Asclepiadeae-Cynanchinae clade (BSMP = 97, BSML = 100, PP = 1.0). The study confirms the generally accepted tribal and subtribal structure of the subfamily. One exception is Eustegia minuta, which is placed here as sister to all Asclepiadeae (BSMP = 58, BSML = 76, PP = 0.99) and not as sister to the Marsdenieae + Ceropegieae clade. The weak support and conflicting position indicate the need for a placement of Eustegia as an independent tribe. In Asclepiadeae, a sister group position of Cynanchinae to the Asclepiadinae + Tylophorinae clade is favoured (BSMP = 84, BSML = 88, PP = 1.0), whereas Schizostephanus is retrieved as unresolved. Oxystelma appears as an early-branching member of Asclepiadinae with weak support (BSMP = 52, BSML = 74, PP = 0.69). Calciphila and Solenostemma are also associated with Asclepiadinae with weak support (BSMP = 37, BSML = 45, PP = 0.79), but all alternative positions are essentially without support. The position of Indian Asclepiadoideae in the family phylogeny is discussed. (c) 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 601-619.
Resumo:
The genus Sarcocheilichthys is a group of small cyprinid fishes comprising 10 species/sub-species widely distributed in East Asia, which represents a valuable model for understanding the speciation of freshwater fishes in East Asia. In the present study, the molecular phylogenetic relationship of the genus Sarcocheilichthys was investigated using a 1140 bp section of the mitochondrial cytochrome b gene. Two different tree-building methods, maximum parsimony (MP) and Bayesian methods, yielded trees with almost the same topology, yielding high bootstrap values or posterior probabilities. The results showed that the genus Sarcocheilichthys consists of two large clades, clades I and II. Clade I contains Sarcocheilichthys lacustris, Sarcocheilichthys sinensis and Sarcocheilichthys parvus, with S. parvus at a basal position. In clade II, Sarcocheilichthys variegatus microoculus is at a basal position; samples of the widespread species, Sarcocheilichthys nigripinnis, form a large subclade containing another valid species Sarcocheilichthys czerskii. Sarcocheilichthys kiangsiensis is retained at an intermediate position. Since S. czerskii is a valid species in the S. nigripinnis clade, remaining samples of S. nigripinnis form a paraphyly. This speciation process is attributed to geographical isolation and special environmental conditions experienced by S. czerskii and stable environments experienced by the other S. nigripinnis populations. This type of speciation process was suggested to be very common. Samples of Sarcocheilichthys sinensis sinensis and Sarcocheilichthys sinensis fukiensis that did not form their own monophyletic groups suggest an early stage of speciation and support their sub-species status. Molecular clock analysis indicates that the two major lineages of the genus Sarcocheilichthys, clades I and II diverged c. 8.89 million years ago (mya). Sarcocheilichthys v. microoculus from Japan probably diverged 4.78 mya from the Chinese group. The northern-southern clades of S. nigripinnis began to diverge c. 2.12 mya, while one lineage of S. nigripinnis evolved into a new species, S. czerski, c. 0.34 mya. (C) 2008 The Authors Journal compilation (C) 2008 The Fisheries Society of the British Isles.
Resumo:
土圞儿属(含8种)和旋花豆属(含2种)隶属于豆科、菜豆族、刺桐亚族。土圞儿属呈东亚-北美间断分布,旋花豆属分布于喜玛拉雅地区。传统上,这两个属被认为系统关系非常近。目前对于土圞儿属中种的划分和分类问题缺乏世界范围内的深入研究,因此该属应予以修订。另外,土圞儿属内种间和土圞儿属与旋花豆属间的系统关系也需要进一步研究。本文对这两个属进行了世界范围内的分类学修订。同时,基于形态学、解剖学、孢粉学特征和分子系统学方面的研究,对土圞儿属内部和这两个属之间的系统发育关系进行了探讨。结果如下: 1. 形态学 在标本室研究和野外考查的基础上,对土圞儿属和旋花豆属植物形态性状的变异式样及其分类学意义进行了分析,发现块茎的形态、小叶的大小和形态、花序的类型和花冠的形态等特征在种内稳定,是比较可靠的分类学性状。通过对花序的研究,认为花序的类型可能反映了土圞儿属内各种之间的演化关系,推测肉色土圞儿可能是土圞儿属中较为进化的种类,而云南土圞儿和纤细土圞儿则可能较为原始。 2. 叶表皮特征 首次在光学显微镜和扫描电子显微镜下,对土圞儿属和旋花豆属全部8种植物的叶表皮进行了观察。发现这两个属叶表皮的性状,特别是表皮细胞的形状、垂周壁的式样和蜡质纹饰的特征,对于理解土圞儿属内和这两个属之间的系统关系有重要意义。叶表皮的特征支持以下结论:纤细土圞儿是一个独立的种,而不是云南土圞儿之下的一个变种;对于土圞儿属进行亚属的划分是不合理的。 3. 孢粉学 在光学显微镜和扫描电子显微镜下,对7种土圞儿属和旋花豆属植物的花粉进行了观察。这两个属的花粉均为三孔沟,三角球形或球形。土圞儿属的花粉可划分为两种类型:肉色土圞儿的花粉外壁为典型的网状纹饰;其他的种花粉外壁较光滑,具颗粒状或短条纹状纹饰。肉色土圞儿花粉外壁纹饰的类型可能反映了其在Apios属中较进化的位置。旋花豆属的花粉特征和肉色土圞儿相似,这也许说明了两者之间的亲缘关系较近。 4. 分子系统学 通过对土圞儿属和旋花豆属6种植物的两个DNA片段ITS和H3D进行简约性分析,构建了这两个属之间的系统关系树。结果如下:土圞儿属和旋花豆属是亲缘关系较近的姐妹群;土圞儿属自身组成一个单系群,是一个自然的类群;北美的土圞儿聚成一支,隐藏在东亚的种里。分子证据和花序类型、花粉形态等重要的形态学证据相吻合。基于上述证据,我们对土圞儿属东亚-北美间断分布的格局及其可能的成因进行了初步探讨。 5. 分类修订 对土圞儿属和旋花豆属进行了分类修订,考证了关于这两个属曾发表过的所有的名称。确认了土圞儿属应包含6种,旋花豆属有2种。排除了5个不包括在土圞儿属内的种名。此外,本文还给出了这两个属各个种的地理分布图、分种检索表、形态描述和插图。
Resumo:
A new genus and two new species are described from the Pearl River drainage in Guangxi Province, South China. Hongshuia, new genus, can be distinguished from all other Asian genera of the Labeonini by having a lower lip with its median lobe modified into a round, fleshy plate peripherally greatly protruded so as to form a ring-like fold that is posteromedially continuous with the mental region, and centrally sunken so as to form a round, flat, fleshy pad. This genus is distinct from all other Asian labeonine genera of the Garrina except for one newly described species of Parasinilabeo ( P. longibarbus), Pseudocrossocheilus, and Sinocrossocheilus, in the presence of well-developed maxillary barbels. Hongshuia differs from the above three genera in the lower lip morphology, and further from both Pseudocrossocheilus and Qianlabeo in the number of pharyngeal tooth rows and from Sinocrossocheilus in the colour pattern. Two new species, H. banmo and H. paoli, differ in the distribution density and degree of development of papillae on the rostral fold, depth of indentations on the distal edge of the rostral fold, presence or absence of papillae on the lower lip, size and shape of tubercles on the tip of the snout and anterior portion of the lachrymal, length, position and colour pattern of the dorsal fin, and snout length.
Resumo:
Background and Aims It is an enduring question as to the mechanisms leading to the high diversity and the processes producing endemics with unusual morphologies in the Himalayan alpine region. In the present study, the phylogenetic relationships and origins of three such endemic genera were analysed, Dolomiaea, Diplazoptilon and Xanthopappus, all in the tribe Cardueae of Asteraceae.Methods The nuclear rDNA internal transcribed spacer (ITS) and plastid trnL-F and psbA-trnH regions of these three genera were sequenced. The same regions for other related genera in Cardueae were also sequenced or downloaded from GenBank. Phylogenetic trees were constructed from individual and combined data sets of the three types of sequences using maximum parsimony, maximum likelihood and Bayesian analyses.Key Results The phylogenetic tree obtained allowed earlier hypotheses concerning the relationships of these three endemic genera based on gross morphology to be rejected. Frolovia and Saussurea costus were deeply nested within Dolomiaea, and the strong statistical support for the Dolomiaea-Frolovia clade suggested that circumscription of Dolomiaea should be more broadly redefined. Diplazoptilon was resolved as sister to Himalaiella, and these two together are sister to Lipschitziella. The clade comprising these three genera is sister to Jurinea, and together these four genera are sister to the Dolomiaea-Frolovia clade. Xanthopappus, previously hypothesized to be closely related to Carduus, was found to be nested within a well-supported but not fully resolved Onopordum group with Alfredia, Ancathia, Lamyropappus, Olgaea, Synurus and Syreitschikovia, rather than the Cardinis group. The crude dating based on ITS sequence divergence revealed that the divergence time of Dolomiaea-Frolovia from its sister group probably occurred 13.6-12.2 million years ago (Ma), and the divergence times of the other two genera, Xanthopappus and Diplazoptilon, from their close relatives around 5.7-4.7 Ma and 2.0-1.6 Ma, respectively.Conclusions The findings provide an improved understanding of the intergeneric relationships in Cardueae. The crude calibration of lineages indicates that the uplifts of the Qiinghai -Tibetan Plateau since the Miocene might have served as a continuous stimulus for the production of these morphologically aberrant endemic elements of the Himalayan flora.
Resumo:
All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland. © 2013. American Geophysical Union. All Rights Reserved.
Resumo:
The Caribbean Island Biodiversity Hotspot is the largest insular system of the New World and a priority for biodiversity conservation worldwide. The tribe Adeliae (Euphorbiaceae) has over 35 species endemic to this hotspot, representing one of the most extraordinary cases of speciation in the West Indies, involving taxa from Cuba, Hispaniola, Jamaica, and the Bahamas. These species form a monophyletic group and traditionally have been accommodated in two endemic genera: Lasiocroton and Leucocroton. A study based on: (1) scanning electron microscopy of pollen and trichomes, (2) macromorphology, and (3) molecular data, was conducted to reveal generic relationships within this group. Phylogenies were based on parsimony and Bayesian analyses of nucleotide sequences of the ITS regions of the nuclear ribosomal DNA and the non-coding chloroplast DNA spacers psbM-trnD and ycf6-pcbM. One species, Lasiocroton trelawniensis, was transferred from the tribe into the genus Bernardia. Of the remaining species, three major monophyletic assemblages were revealed, one was restricted to limestone ares of Hispaniola and was sister to a clade with two monophyletic genera, Lasiocroton and Leucocroton. Morphological, biogeographical, and ecological data provided additional support for each of these three monophyletic assemblages. The Hispaniolan taxa were accommodated in a new genus with four species: Garciadelia. Leucocroton includes the nickel hyperaccumulating species from serpentine soils of Cuba, while the rest of the species were placed in Lasiocroton, a genus restricted to limestone areas. The geographic history of the islands as well as the phylogenetic placement of the Leucocroton-alliance, allows the research to include the historical biogeography of the alliance across the islands of the Caribbean based on a dispersal-vicariance analysis. The alliance arose on Eastern Cuba and Hispaniola, with Lasiocroton and Leucocroton diverging on Eastern Cuba according to soil type. Within Leucocroton, the analysis shows two migrations across the serpentine soils of Cuba. Additional morphological, ecological, and phylogenetic analyses support four new species in Cuba (Lasiocroton gutierrezii) and Hispaniola ( Garciadelia abbottii, G. castilloae, and G. mejiae). ^
Resumo:
Nineteen areas on the island of Hispaniola (Haiti and the Dominican Republic) were studied with the aim of determining the distribution pattern of the endemic flora in these areas, and their variability with altitude. The main concentration of endemic species occurs in mountains with a medium altitude and in certain mountain sites (palaeo-islands), which coincide with hotspots; a lower number of endemics are found in low-lying areas (coldspots), due to the degradation of their habitats. A total of 1,582 endemic species were studied and were distributed in 19 areas. The whole island is of outstanding interest for its richness in endemics; it has 2,050 endemic species, representing 34.16% of its total flora. The territory in the study is home to 1,284 genera of which 31 are endemic to the island, including monotypical genera such as Tortuella abietifolia Urb. & Ekman, and endemic genera such as Hottea, containing seven endemic species. The sites with the highest rate of endemics are area A16 in the central range with a total of 440 endemic species, of which 278 are exclusive to the territory; and the Sierra de Bahoruco, la Selle, La Hotte and Tibur on in area A12, where we found 699 plants of which 482 are endemic and exclusive to the area; and A13 with 173 and 129 respectively. This work highlights the exceptional floristic diversity in endemic species and genera and analyses their distribution patterns as a tool for conservation in this area of the world, whose high endemicity rate makes it one of the most significant hotspots in the Caribbean.