977 resultados para drug sensitivity
Resumo:
Recent technical advances have enabled for the first time, reliable in vitro culture of prostate cancer samples as prostate cancer organoids. This breakthrough provides the significant possibility of high throughput drug screening covering the spectrum of prostate cancer phenotypes seen clinically. These advances will enable precision medicine to become a reality, allowing patient samples to be screened for effective therapeutics ex vivo, with tailoring of treatments specific to that individual. This will hopefully lead to enhanced clinical outcomes, avoid morbidity due to ineffective therapies and improve the quality of life in men with advanced prostate cancer.
Resumo:
There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-alpha and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Resumo:
Plasmids that contain synthetic genes coding for small oligoribonucleotides called external guide sequences (EGSs) have been introduced into strains of Escherichia coli harboring antibiotic resistance genes. The EGSs direct RNase P to cleave the mRNAs transcribed from these genes thereby converting the phenotype of drug-resistant cells to drug sensitivity. Increasing the EGS-to-target mRNA ratio by changing gene copy number or the number of EGSs complementary to different target sites enhances the efficiency of the conversion process. We demonstrate a general method for the efficient phenotypic conversion of drug-resistant bacterial cultures.
Resumo:
A field-applicable assay for testing anthelmintic sensitivity is required to monitor for anthelmintic resistance. We undertook a study to evaluate the ability of three in vitro assay systems to define drug sensitivity of clinical isolates of the human hookworm parasite Necator americanus recovered from children resident in a village in Madang Province, Papua New Guinea. The assays entailed observation of drug effects on egg hatch (EHA), larval development (LDA), and motility of infective stage larvae (LMA). The egg hatch assay proved the best method for assessing the response to benzimidazole anthelmintics, while the larval motility assay was suitable for assessing the response to ivermectin. The performance of the larval development assay was unsatisfactory on account of interference caused by contaminating bacteria. A simple protocol was developed whereby stool samples were subdivided and used for immediate egg recovery, as well as for faecal culture, in order to provide eggs and infective larvae, respectively, for use in the egg hatch assay and larval motility assay systems. While the assays proved effective in quantifying drug sensitivity in larvae of the drug-susceptible hookworms examined in this study, their ability to indicate drug resistance in larval or adult hookworms remains to be determined. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight into the complexities underlying cancer drug resistance. Recent data now implicate intratumoural heterogeneity as a major driver of drug resistance. Single cell sequencing studies that identified multiple genetically distinct variants within human tumours clearly demonstrate the heterogeneous nature of human tumours. The major contributors to intratumoural heterogeneity are (i) genetic variation, (ii) stochastic processes, (iii) the microenvironment and (iv) cell and tissue plasticity. Each of these factors impacts on drug sensitivity. To deliver curative therapies to patients, modification of current therapeutic strategies to include methods that estimate intratumoural heterogeneity and plasticity will be essential.
Resumo:
Five isolates of Aeromonas sobria, collected from the diseased fish were selected for detection the pathogenicity following water-born infection method on silver barbs (Barbodes gonionotus) at the selected exposure dose 2.5x10⁸ CFU/ml which was standardized by preliminary test. In the experimental condition lesion and mortality were found in fishes. Among the isolate, Ass17 Ass19, Ass31 and Ass36 were successfully infected 20-60% fishes. Another isolate Ass20 was found non-pathogenic. Drug sensitivity test was performed by six antibiotics viz. Oxytetracycline, Oxolinic acid, Chloramphenicol, Stilphamethozazole, Streptomycin, Erythromycin. All the isolates showed variable reaction patterns to antibiotics. Most of the isolates were found sensitive to Oxytetracycline (OT), Oxolinic acid (OA) and Chloramphenicol (C) but resistance to Erythromycin and Sulphamethoxazole (SXT). Isolate Ass31 found resistant to Oxolinic acid.
Resumo:
Nhx1 est un antiport vacuolaire de Na+/H+ chez la levure Saccharomyces cerevisiae. Nhx1 joue un rôle important dans le maintien de l’homéostasie ionique du cytoplasme de la cellule. En effet, la mutation du gène NHX1 chez la levure nhx1Δ entraîne une perte de l’homéostasie cellulaire quand les cellules sont cultivées dans un milieu de faible osmolarité. Ce travail rapporte pour la première fois, et contrairement à la cellule parentale, que la mutation du gène NHX1 a pour effet une sensibilité du mutant nhx1Δ à une variété des drogues et des agents cationiques et anioniques lorsque les cellules sont cultivées dans un milieu riche. En outre, dans ces conditions de culture, aucune sensibilité n’a été observée chez le mutant nhx1Δ quand les cellules sont traitées avec différentes concentrations de sel. Nous avons aussi démontré que la sensibilité du mutant nhx1Δ aux différents agents ainsi que la sécrétion de l’enzyme carboxypeptidase Y observé chez ce mutant n’ont pas été restauré lorsque les cellules sont cultivées dans des milieux avec différents pH ou avec différentes concentrations de sel. Enfin, une analyse génétique a révélé que le mutant nhx1Δ montre un phénotype distinct d’autres mutants qui ont un défaut dans le trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi quand ces cellules sont traitées avec différents agents. Cette analyse prouve que la sensibilité de nhx1Δ aux différents agents n’est pas liée au trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi.
Resumo:
The effect of a lyophilized mistletoe infusion (LMI) was studied on isolated guinea-pig vas deferens. LMI caused a contraction which was partially blocked by phentolamine but not by atropine. LMI caused a shift to the left of the norepinephrine concentration-effect curve (CEC), an effect which appeared to be blocked by atropine and was absent in animals previously treated with reserpine and α-methyl-para-tyrosine. The increase of the norepinephrine maximal response induced by LMI was not blocked by atropine or pharmacological denervation. LMI caused a shift to the right of the acetylcholine CEC and had no effect on the acetylcholine maximal response. These results suggest that the effects seem to be due mainly to the presence of potassium ion in the LMI; however, the participation of muscarinic agonist(s) of reduced intrinsic activity or some tyramine-like substance could not be ruled out.
Resumo:
We investigated the mechanisms of the alterations in sensitivity to catecholamines in right atria from female rats exhibiting regular 4-day estrous cycles after three foot-shock sessions at estrus, metestrus, and diestrus or at diestrus, proestrus, and estrus. Right atria from stressed rats sacrificed at diestrus showed subsensitivity to noradrenaline and adrenaline. After in vitro sympathetic denervation (38 μM 6-hydroxydopamine) plus inhibition of neuronal reuptake (0.1 μM desipramine) subsensitivity to noradrenaline was abolished, but it was again evident when extraneuronal uptake was also inhibited (10 μM phenoxybenzamine and 30 μM corticosterone). The same pretreatment abolished the subsensitivity to adrenaline. After addition of 1 μM butoxamine, a β2-adrenoceptor antagonist, the tissues from stressed rats were subsensitive to adrenaline. Right atria from stressed rats sacrificed at estrus did not show any alteration in sensitivity to catecholamines. We conclude that after foot-shock stress, right atria from female rats sacrificed at diestrus showed subsensitivity of the chronotropic response to catecholamines as a result of a conformational alteration of β1-adrenoceptors, simultaneously with an increase in β2-adrenoceptor-mediated response. The mechanisms seem to be similar to those which underlie stress-induced alterations in catecholamine sensitivity in right atria from male rats. However, during estrus there are some protective factors that prevent the effects of stress on right atria.
Resumo:
Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
Resumo:
The majority of patients with non-small-cell lung cancer (NSCLC) present with advanced disease, with targeted therapies providing some improvement in clinical outcomes. The epidermal growth factor receptor (EGFR) tyrosine kinase (TK) plays an important role in the pathogenesis of NSCLC. Tyrosine kinase inhibitors (TKIs), which target the EGFR TK domain, have proven to be an effective treatment strategy; however, patient responses to treatment vary considerably. Therefore, the identification of patients most likely to respond to treatment is essential to optimise the benefit of TKIs. Tumour-associated activating mutations in EGFR can identify patients with NSCLC who are likely to have a good response to TKIs. Nonetheless, the majority of patients relapse within a year of starting treatment. Studies of tumours at relapse have demonstrated expression of a T790M mutation in exon 20 of the EGFR TK domain in approximately 50% of cases. Although conferring resistance to reversible TKIs, these patients may remain sensitive to new-generation irreversible/panerb inhibitors. A number of techniques have been employed for genotypic assessment of tumourassociated DNA to identify EGFR mutations, each of which has advantages and disadvantages. This review presents an overview of the current methodologies used to identify such molecular markers. Recent developments in technology may make the monitoring of changes in patients' tumour genotypes easier in clinical practice, which may enable patients' treatment regimens to be tailored during the course of their disease, potentially leading to improved patient outcomes.
Resumo:
Objective To evaluate the efficacy and toxicity of Oxaliplatin and 5-Fluorouracil (5-FU)/Leucovorin (LV) combination in ovarian cancer relapsing within 2 years of prior platinum-based chemotherapy in a phase II trial. Methods Eligible patients had at least one prior platinum-based chemotherapy regimen, elevated CA-125 ≥ 60 IU/l, radiological evidence of disease progression and adequate hepatic, renal and bone marrow function. Patients with raised CA-125 levels alone as marker of disease relapse were not eligible. Oxaliplatin (85 mg/m 2) was given on day 1, and 5-Fluorouracil (370 mg/m 2) and Leucovorin (30 mg) was given on days 1 and 8 of a 14-day cycle. Results Twenty-seven patients were enrolled. The median age was 57 years (range 42-74 years). The median platinum-free interval (PFI) was 5 months (range 0-17 months) with only 30% of patients being platinum sensitive (PFI > 6 months). Six patients (22%) had two prior regimens of chemotherapy. A total of 191 cycles were administered (median 7; range 2-12). All patients were evaluable for toxicity. The following grade 3/4 toxicities were noted: anemia 4%; neutropenia 15%; thrombocytopenia 11%; neurotoxicity 8%; lethargy 4%; diarrhea 4%; hypokalemia 11%; hypomagnesemia 11%. Among 27 enrolled patients, 20 patients were evaluable for response by WHO criteria and 25 patients were evaluable by Rustin's CA-125 criteria. The overall response rate (RR) by WHO criteria was 30% (95% CI: 15- 52) [three complete responses (CRs) and three partial responses (PRs)]. The CA-125 response rate was 56% (95% CI: 37-73). Significantly, a 25% (95% CI: 9-53) radiological and a 50% (95% CI: 28-72) CA-125 response rate were noted in platinum resistant patients (PFI < 6 months). The median response duration was 4 months (range 3-12) and the median overall survival was 10 months. Conclusion Oxaliplatin and 5-Fluorouracil/ Leucovorin combination has a good safety profile and is active in platinum-pretreated advanced epithelial ovarian cancer. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Background Animal and human infection with multiple parasite species is the norm rather than the exception, and empirical studies and animal models have provided evidence for a diverse range of interactions among parasites. We demonstrate how an optimal control strategy should be tailored to the pathogen community and tempered by species-level knowledge of drug sensitivity with use of a simple epidemiological model of gastro-intestinal nematodes. Methods We construct a fully mechanistic model of macroparasite co-infection and use it to explore a range of control scenarios involving chemotherapy as well as improvements to sanitation. Results Scenarios are presented whereby control not only releases a more resistant parasite from antagonistic interactions, but risks increasing co-infection rates, exacerbating the burden of disease. In contrast, synergisms between species result in their becoming epidemiologically slaved within hosts, presenting a novel opportunity for controlling drug resistant parasites by targeting co-circulating species. Conclusions Understanding the effects on control of multi-parasite species interactions, and vice versa, is of increasing urgency in the advent of integrated mass intervention programmes.