438 resultados para doxorubicin (DOX)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein nanoparticles (NPs) have found significant applications in drug delivery due to their inherent biocompatibility, which is attributed to their natural origin. In this study, bovine serum abumin (BSA) nanoparticles were introduced in multilayer thin film via layer-by-layer self-assembly for localized delivery of the anticancer drug Doxorubicin (Dox). BSA nanoparticles (similar to 100 nm) show a high negative zeta potential in aqueous medium (-55 mV) and form a stable dispersion in water without agglomeration for a long period. Hence, BSA NPs can be assembled on a substrate via layer-by-layer approach using a positively charged polyelectrolyte (chitosan in acidic medium). The protein nature of these BSA nanoparticles ensures the biocompatibility of the film, whereas the availability of functional groups on this protein allows one to tune the property of the self-assembly to have a pH-dependent drug release profile. The growth of multilayer thin film was monitored by UV-visible spectroscopy, and the films were further characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The drug release kinetics of these BSA nanoparticles and their self-assembled thin film has been compared at a physiological pH of 7.4 and an acidic pH of 6.4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently we have described an HPMA copolymer conjugate carrying both the aromatase inhibitor aminoglutethimide (AGM) and doxorubicin (Dox) as combination therapy. This showed markedly enhanced in vitro cytotoxicity compared to the HPMA copolymer-Dox (FCE28068), a conjugate that demonstrated activity in chemotherapy refractory breast cancer patients during early clinical trials. To better understand the superior activity of HPMA copolymer-Dox-AGM, here experiments were undertaken using MCF-7 and MCF-7ca (aromatase-transfected) breast cancer cell lines to: further probe the synergistic cytotoxic effects of AGM and Dox in free and conjugated form; to compare the endocytic properties of HPMA copolymer-Dox-AGM and HPMA copolymer-Dox (binding, rate and mechanism of cellular uptake); the rate of drug liberation by lysosomal thiol-dependant proteases (i.e. conjugate activation), and also, using immunocytochemistry, to compare their molecular mechanism of action. It was clearly shown that attachment of both drugs to the same polymer backbone was a requirement for enhanced cytotoxicity. FACS studies indicated both conjugates have a similar pattern of cell binding and endocytic uptake (at least partially via a cholesterol-dependent pathway), however, the pattern of enzyme-mediated drug liberation was distinctly different. Dox release from PK1 was linear with time, whereas the release of both Dox and AGM from HPMA copolymer-Dox-AGM was not, and the initial rate of AGM release was much faster than that seen for the anthracycline. Immunocytochemistry showed that both conjugates decreased the expression of ki67. However, this effect was more marked for HPMA copolymer-Dox-AGM and, moreover, only this conjugate decreased the expression of the anti-apoptotic protein bcl-2. In conclusion, the superior in vitro activity of HPMA copolymer-Dox-AGM cannot be attributed to differences in endocytic uptake, and it seems likely that the synergistic effect of Dox and AGM is due to the kinetics of intracellular drug liberation which leads to enhanced activity. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5 mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4 ma/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo 111). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (p < 0.01). Lycopene levels (mean +/- S.D. nmol/kg) in saponified hearts were similar between L (47.43 +/- 11.78) and DL (49.85 +/- 16.24) groups. Our results showed: (1) lycopene absorption was confirmed by its cardiac levels; (2) DOX-induced oxidative DNA damage in cardiomyocyte; (3) tomato-oleoresin supplementation protected against cardiomyocyte oxidative DNA damage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microemulsions (ME) containing soya phosphatidylcholine (SPC/polyoxyethylenglycerol trihydroxystearate 40 (EU)/sodium oleate (SO) as surfactant cholesterol (CHO) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant SPC/EU/SO weight ratio 3.5:3.5:3.0 by titration, in order to characterize the proportions between the components to form clear systems. The dynamic light scattering results showed that the size of the oil droplets decreases significantly with the ratio of surfactant/oil phase added to system. Depending on the composition ME system could exhibit a thixotropic behavior. The apparent viscosity increased 25- and 13-folds with cholesterol concentration for drug-free and drug-load ME, respectively. It was also verified that the octanol/aqueous buffer partition coefficient (K-O/B) of doxorubicin (DOX) was pH dependent increasing abruptly above pH 6.0. It was possible to incorporate 2.24 mg/ml of DOX into ME. The incorporation of DOX in the ME systems increased the droplets size for all surfactant concentrations used in the system. The results suggest that DOX interacts with the microstructure of the ME at the studied pH increasing significantly the drug solubility. It was possible to conclude that the investigated ME can be a very promising vehicle as drug-carrier for administration of doxorubicin. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work structural features of anionic microemulsions, containing the pharmaceutical biocompatible components soya phosphatidylcholine (SPC), eumulgin HRE 40 (EU) and sodium oleate (SO) as surfactant, cholesterol (CHO) as oil phase and aqueous buffer were studied. Microemulsions were formulated with and without the antitumor drug doxorubicin (DOX). The various microstructures characterized in the pseudo-temary phase diagram were analyzed by polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) as well as by their ability to incorporate and release DOX. The experimental results demonstrated a correlation between the composition, the structural features and drug delivery. It was found that at higher cholesterol contents, the crystallization of CHO polymorph phases changed the mobility of DOX molecules. Droplets were formed with short-range spatial correlation from a microemulsion (ME) with a low surfactant:oil ratio. More ordered structures with lamellar arrangements formed by the increasing of the CHO proportions in the formulation may be due to CHO crystallization. The in vitro release of DOX showed that the presence of a high content of crystalline CHO prolongs the release of DOX from ME. The retention of DOX in the internal oil phase of the ME may modulate the drug release for a prolonged time. These results clearly demonstrate the potential of ME as a drug-delivery system. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an anthracycline antibiotic with a broad antitumor spectrum. However, the clinical use of DOX is limited because of its cardiotoxicity, a dose-dependent effect. Colloidal drug delivery systems, such as microemulsions (MEs), allow the incorporation of drugs, modifying the pharmacokinetic (PK) profile and toxic effects. In this study, we evaluated the PK profile and cardiotoxicity of a new DOX ME (DOX-ME). The PK profile of DOX-ME was determined and compared with that of the conventional DOX after single-dose administration (6mg/kg, intravenous) in male Wistar rats (n = 12 per group). The cardiotoxicity of DOX formulations was evaluated by serum creatine kinase MB (CKMB) activity in both animal groups before and after drug administration. The plasma DOX measurements were performed by high-performance liquid chromatography with fluorescence detection, and the CKMB levels were assayed using the CKMB Labtest® kit. The ME system showed a significant increase in plasma DOX concentrations and lower distribution volume when compared with conventional DOX. Serum CKMB activity increased after conventional DOX administration but was unchanged in the DOX-ME group. These results demonstrate modifications in drug access to susceptible sites using DOX-ME. DOX-ME displayed features that make it a promising system for future therapeutic application. © 2012 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dilated cardiomyopathy (DCM) is characterized by chamber dilation and cardiac dysfunction. Because of the poor prognosis, models are needed for the investigation of and development of new therapeutic approaches, as well as stem cell therapy. Doxorubicin (DOX), used as chemotherapeutic agent, is reported to be cumulative cardiotoxic causing DCM. The aim of the study was to investigate the onset of systolic dysfunction using echocardiography in rabbits receiving two different doses of DOX (1. mg/kg twice a week and 2. mg/kg once a week). Twenty rabbits were treated with doxorubicin in two different doses for 6. weeks and compared with a control group treated with NaCl 0.9%. The effect of doxorubicin on the myocardium was investigated with histological analysis and scanning electron microscopy of left ventricle (LV), as well as in the interventricular septum (IVS) and right ventricle (RV). The results showed a high mortality rate for rabbits receiving 2. mg/kg once a week. A significant reduction in systolic function was present in animals treated with DOX after 6. weeks, with decreased ejection fraction and shortening fraction. Histology and electron microscopy revealed vacuolization, intracytoplasmic granulation, necrosis and interstitial fibrosis in LV, as well as in the IVS and RV. Doxorubicin induced changes are present in the LV, RV and IVS, and the administration at the dose of 1. mg/kg twice a week for only 6. weeks is safe and sufficient to induce DCM in rabbits. © 2012 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The signal transducer and activator of transcription (STAT) 3, a transcriptional factor downstream of several cytokines, is activated by Janus kinase families and plays a pivotal role in cardiac hypertrophy through gp130. To determine the physiological significance of STAT3 in vivo, transgenic mice with cardiac-specific overexpression of the Stat3 gene (STAT3-TG) were generated. STAT3-TG manifested myocardial hypertrophy at 12 wk of age with increased expression of the atrial natriuretic factor (ANF), β-myosin heavy chain (MHC), and cardiotrophin (CT)-1 genes. The animals were injected i.p. with 15 mg/kg doxorubicin (Dox), an antineoplastic drug with restricted use because of its cardiotoxicity. The survival rates after 10 days were 25% (5/20) for control littermates (WT), but 80% (16/20) for STAT3-TG (P < 0.01). WT showed increased expression of β-MHC and ANF mRNAs in the hearts 1 day after Dox treatment; this expression peaked at 3 days, suggesting that the WT suffered from congestive heart failure. Although the expression of these mRNAs was elevated in STAT3-TG hearts before Dox treatment, no additional increase was observed after the treatment. Dox administration significantly reduced the expression of the cardiac α-actin and Stat3 genes in WT hearts but not in STAT3-TG. These results provide direct evidence that STAT3 transduces not only a hypertrophic signal but also a protective signal against Dox-induced cardiomyopathy by inhibiting reduction of cardiac contractile genes and inducing cardiac protective factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doxorubicin (DOX) and its daunosamine-modified derivative, 2-pyrrolino-DOX, which is 500-1000 times more active than DOX, were incorporated into agonistic and antagonistic analogs of luteinizing hormone-releasing hormone (LH-RH). The conjugation of DOX with LH-RH analogs was performed by using N-(9-fluorenylmethoxycarbonyl)-DOX-14-O-hemiglutarate, a dicarboxylic acid ester derivative of DOX. Coupling this derivative covalently to the epsilon-amino group of the D-Lys side chain of agonist [D-Lys6]LH-RH or antagonistic analog AC-D-Nal(2)-D-Phe(4Cl)-D-Pal(3)-Ser-Tyr-D-Lys-Leu-Arg-Pro-D-Ala-NH 2 [where Nal(2) = 3-(2-naphthyl)alanine, Pal(3) = 3-(3-pyridyl)alanine, and Phe(4CI) = 4-chlorophenylalanine] was followed by the removal of the 9-fluorenylmethoxycarbonyl protective group to yield cytotoxic derivatives of LH-RH analogs containing DOX. From these DOX containing LH-RH hybrids, intensely potent analogs with daunosamine-modified derivatives of DOX can be readily formed. Thus, cytotoxic LH-RH agonist containing DOX (AN-152) can be converted in a 66% yield by a reaction with a 30-fold excess of 4-iodobutyraldehyde in N,N-dimethylformamide into a derivative having 2-pyrrolino-DOX (AN-207). Hybrid molecules AN-152 and AN-207 fully preserve the cytotoxic activity of their radicals, DOX or 2-pyrrolino-DOX, respectively, in vitro, and also retain the high binding affinity of the peptide hormone portion of the conjugates to rat pituitary receptors for LH-RH. These highly potent cytotoxic analogs of LH-RH were designed as targeted anti-cancer agents for the treatment of various tumors that possess receptors for the carrier peptide. Initial in vivo studies show that the hybrid molecules are much less toxic than the respective cytotoxic radicals incorporated and significantly more active in inhibiting tumor growth.