828 resultados para disorders of lipid and lipoprotein metabolism
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.
Resumo:
Study Model: Retrospective study. Study Objective: To characterize statin treatment management due to lipid alterations and side effects throughout statin treatment in basic healthcare unit. Methods: Medical reports of women from a basic healthcare unit were analyzed, obtaining: disease presence, regular medication prescription, statin type and dosage, biochemical exams results, musculoskeletal complaints, and statin use cessation, going back the information until the medical consultation of first prescription. Results: Prescribed statins were Simvastatin and Atorvastatin at low doses (10-20 mg). Dose (48,4%) and/or type (25,4%) alterations occurred for lipid profile adequacy. Lipid levels were reduced without creatine kinase elevation. Treatment withdrawn (30,6%) was mainly due to their own decision (74%), which was strongly associated with records of musculoskeletal complaints (Odds Ratio: 6,40[1,53-26,78]). Conclusion: Statin treatment was effective in reducing serum lipid levels and self-reported pain was underestimated, characterizing the major limiting factor for treatment adherence.
Resumo:
Fish and fish oil-rich sources of long-chain n-3 fatty acids have been shown to be cardio-protective, through a multitude of different pathways including effects on arrythymias, endothelial function, inflammation and thrombosis, as well as modulation of both the fasting and postprandial blood lipid profile. To date the majority of studies have examined the impact of EPA and DHA fed simultaneously as fish or fish oil supplements. However, a number of recent studies have compared the relative biopotency of EPA v. DHA in relation to their effect on blood lipid levels. Although many beneficial effects of fish oils have been demonstrated, concern exists about the potential deleterious impact of EPA and DHA on LDL-cholesterol, with a highly-heterogenous response of this lipid fraction reported in the literature. Recent evidence suggests that apoE genotype may be in part responsible. In the present review the impact of EPA and DHA on cardiovascular risk and the blood lipoprotein profile will be considered, with a focus on the apoE gene locus as a possible determinant of lipid responsiveness to fish oil intervention.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
HIV patients are predisposed to the development of hypertriglyceridemia and hypercholesterolemia as a result of both viral infection and HIV infection therapy, especially the protease inhibitors. Chemokines and cytokines are present at sites of inflammation and can influence the nature of the inflammatory response in atherosclerosis. We investigated the correlation between biochemical variables and β-chemokines (MIP-1α and RANTES) and the apolipoprotein E genotype in HIV-infected individuals. The apolipoproteins were measured by nephelometry. Triglycerides and total cholesterol were determined by standard enzymatic procedures. The β-chemokines were detected by ELISA. The genetic category of CCR5 and apolipoprotein E were determined by PCR amplification and restriction enzymes. Immunological and virological profiles were assessed by TCD4 + and TCD8 + lymphocyte counts and viral load quantification. Positive correlations were found between apo E and CD8 + (p = 0.035), apo E and viral load (p = 0.018), MIP-1α and triglycerides (p = 0.039) and MIP-1α and VLDL (p = 0.040). Negative correlations were found between viral load and CD4 + (p = 0.05) and RANTES and CD4 + (p = 0.029). The β-chemokine levels may influence lipid metabolism in HIV-infected individuals. © 2005 by The Brazilian Journal of Infectious Diseases and Contexto Publishing. All rights reserved.
Resumo:
We characterized lipid and lipoprotein changes associated with a lopinavir/ritonavir-containing regimen. We enrolled previously antiretroviral-naive patients participating in the Swiss HIV Cohort Study. Fasting blood samples (baseline) were retrieved retrospectively from stored frozen plasma and posttreatment (follow-up) samples were collected prospectively at two separate visits. Lipids and lipoproteins were analyzed at a single reference laboratory. Sixty-five patients had two posttreatment lipid profile measurements and nine had only one. Most of the measured lipids and lipoprotein plasma concentrations increased on lopinavir/ritonavir-based treatment. The percentage of patients with hypertriglyceridemia (TG >150?mg/dl) increased from 28/74 (38%) at baseline to 37/65 (57%) at the second follow-up. We did not find any correlation between lopinavir plasma levels and the concentration of triglycerides. There was weak evidence of an increase in small dense LDL-apoB during the first year of treatment but not beyond 1 year (odds ratio 4.5, 90% CI 0.7 to 29 and 0.9, 90% CI 0.5 to 1.5, respectively). However, 69% of our patients still had undetectable small dense LDL-apoB levels while on treatment. LDL-cholesterol increased by a mean of 17?mg/dl (90% CI -3 to 37) during the first year of treatment, but mean values remained below the cut-off for therapeutic intervention. Despite an increase in the majority of measured lipids and lipoproteins particularly in the first year after initiation, we could not detect an obvious increase of cardiovascular risk resulting from the observed lipid changes.
Resumo:
Cardiovascular disease (CVD) is a threat to public health. It has been reported to be the leading cause of death in United States. The invention of next generation sequencing (NGS) technology has revolutionized the biomedical research. To investigate NGS data of CVD related quantitative traits would contribute to address the unknown etiology and disease mechanism of CVD. NHLBI's Exome Sequencing Project (ESP) contains CVD related phenotypes and their associated NGS exomes sequence data. Initially, a subset of next generation sequencing data consisting of 13 CVD-related quantitative traits was investigated. Only 6 traits, systolic blood pressure (SBP), diastolic blood pressure (DBP), height, platelet counts, waist circumference, and weight, were analyzed by functional linear model (FLM) and 7 currently existing methods. FLM outperformed all currently existing methods by identifying the highest number of significant genes and had identified 96, 139, 756, 1162, 1106, and 298 genes associated with SBP, DBP, Height, Platelet, Waist, and Weight respectively. ^
Resumo:
Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.
Resumo:
This study evaluates the effects of betaine supplementation (1 g kg−1 for 20 weeks) on the regulation of genes involved in lipid and cholesterol metabolism of Longissimus lumborum and Biceps femoris from obese Alentejano pigs. Betaine supplementation led to an increase in total cholesterol in both muscles, complementing results previously published indicating a significant increase on the intramuscular lipid content. The expression of twelve genes involved in lipogenesis, lipolysis/FA oxidation, FA transport, and cholesterol metabolism, as well as two transcription factors were also evaluated. Genes related to lipid and cholesterol synthesis plus FA transport were consistently up-regulated in both muscles of betaine fed pigs. On the other hand, genes related to lipolysis/FA oxidation were not affected or down-regulated by betaine supplementation. Our data suggest that the underlying mechanism regulating IMF and cholesterol accumulation in Alentejano pigs supplemented with betaine is associated with the up-regulation of genes involved in lipid synthesis, FA transport, and cholesterol synthesis.
Resumo:
The purpose of this study was to examine the effect of prolonged exercise oil plasma lipid and lipoprotein concentrations and to identify caloric time-points where changes occurred. Eleven active male Subjects ran oil a treadmill at 70%,, of maximal fitness (VO2max) and expended 6 278.7 kilojoules (Kj) energy (1500 kcal). Blood samples were obtained at the 4185.8 Kj (1000 kcal) time-point during exercise and at each additional 418.6 Kj (100 kcal) expenditure until 6278.7 Kj was expended. After correcting for plasma volume changes, decreases in low-density lipoprotein cholesterol (LDL-C) were observed during exercise at time-points corresponding to 4604.4 and 5441.5 Kj (1100 and 1300 kcal) of energy expenditure, and immediately after exercise. Total cholesterol concentrations decreased significantly at exercise kilojoule expenditures of 4604.4, 5441.5 and 5860.1 (1100, 1300 and 1400 kcal). There were also exercise induced increases in high-density lipoprotein cholesterol (HDL-C) and HDL2-C concentrations immediately after exercise. Although acute lipid and lipoprotein changes are typically reported in the days following exercise, the Current data indicate that some lipoprotein concentrations change during acute exercise. Our data suggest that a threshold of exercise may be necessary to change lipoproteins during exercise. Future work Should identify potential mechanisms (lipoprotein lipase, cholesterol ester transport protein, LDL uptake) that alter lipoprotein concentrations during prolonged exercise.
Resumo:
The purpose of this study was to analyze the influence of lactation and dry period in the constituents of lipid and glucose metabolism of buffaloes. One hundred forty-seven samples of serum and plasma were collected between November 2009 and July 2010, from properties raising Murrah, Mediterranean and crossbred buffaloes, located in the State of Sao Paulo, Brazil. Biochemical analysis was obtained by determining the contents of serum cholesterol, triglycerides, beta-hydroxybutyrate (β-HBO), non-esterified fatty acids (NEFA) and plasma glucose. Values for arithmetic mean and standard error mean were calculated using the SAS procedure, version 9.2. Tests for normality of residuals and homogeneity of variances were performed using the SAS Guide Data Analysis. Data were analyzed by ANOVA using the SAS procedure Glimmix. The group information (Lactation), Farm and Age were used in the statistical models. Means of groups were compared using Least Square Means (LSMeans) of SAS, where significant difference was observed at P ≤ 0.05. It was possible to conclude that buffaloes during peak lactation need to metabolize body reserves to supplement the lower amounts of bloodstream lipids, when they remain in negative energy balance. In the dry period, there were significant changes in the lipid profile, characterized by decrease of nutritional requirements, with consequent improvement in the general conditions of the animals.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
Hepatitis C virus [HCV] infects 170 million people worldwide. We investigated interactions between HCV proteins and cellular proteins involved in autophagy and lipid metabolism. We sought to develop an infection model using patient derived human serum containing HCV and human hepatocytes, Huh7 cells. Using the model, we have shown intracellular expression of incoming HCV RNA (5′ UTR region and region spanning the E1/E2 glycoproteins), expression of the HCV proteins, core and NS5B, and a cellular response to HCV infection. These data suggests this model can be used to analyse the early stage of HCV infection. HCV utilises the autophagy pathway to both establish infection and to complete its life cycle. We investigated HCV interaction with the early stage autophagy protein ATG5. We found that although ATG5 mRNA is unchanged in HCV infected cells, protein expression of ATG5 is significantly upregulated. These data indicated HCV controls the post-transcriptional regulation of ATG5. We used the upstream open reading frame (uORF) and the 5′ UTR region of ATG5 to examine the post-transcriptional regulation. Our data suggest HCV RNA replication either directly or indirectly causes post-transcriptional regulation of the early autophagy protein, ATG5 in a 5′ UTR and uORF independent manner. HCV infection leads to an increase in SREBP controlled genes e.g. HMG-CoA Reductase, cholesterol, LDL and fatty acid synthesis. We hypothesised that HCV infection causes the activation of SREBP pathway by interacting directly or indirectly with proteins involved in the initiation of the pathway. We sought to determine if HCV interacts with SCAP or INSIG. We confirmed a change in LD distribution and HMG-CoA reductase activity as a result of HCV RNA replication. Significantly, we show SCAP protein expression was also altered during HCV RNA replication and HCV core protein possibly interacts with SCAP.
Resumo:
Therapeutic plasmapheresis allows the extracorporeal removal of plasmatic lipoproteins (Lipid-apheresis) (LA). It can be non selective (non specific), semi - selective or selective low density lipoprotein-lipoprotein(a) (specific [LDL- Lp(a)] apheresis) (Lipoprotein apheresis, LDLa). The LDL removal rate is a perfect parameter to assess the system efficiency. Plasma-Exchange (PEX) cannot be considered either specific nor, selective. In PEX the whole blood is separated into plasma and its corpuscular components usually through centrifugation or rather filtration. The corpuscular components mixed with albumin solution plus saline (NaCl 0.9%) solution at 20%-25%, are then reinfused to the patient, to substitute the plasma formerly removed. PEX eliminates atherogenic lipoproteins, but also other essential plasma proteins, such as albumin, immunoglobulins, and hemocoagulatory mediators. Cascade filtration (CF) is a method based on plasma separation and removal of plasma proteins through double filtration. During the CF two hollow–fiber filters with pores of different diameter are used to eliminate the plasma components of different weight and molecular diameter. A CF system uses a first polypropylene filter with 0.55 µm diameter pores and a second one of diacetate of cellulose with 0.02 µm pores. The first filter separates the whole blood, and the plasma is then perfused through a second filter which allows the recovery of molecules with a diameter lower than 0.02 µm, and the removal of molecules larger in diameter as apoB100–containing lipoproteins. Since both albumin and immunoglobulins are not removed, or to a negligible extent, plasma-expanders, substitution fluids, and in particular albumin, as occurs in PEX are not needed. CF however, is characterized by lower selectivity since removes also high density lipoprotein (HDL) particles which have an antiatherogenic activity. In the 80’s, a variation of Lipid-apheresis has been developed which allows the LDL-cholesterol (LDLC) (-61%) and Lp(a) (-60%) removal from plasma through processing 3 liters of filtered plasma by means of lipid-specific thermofiltration, LDL immunoadsorption, heparin-induced LDL precipitation, LDL adsorption through dextran sulphate. More recently (90’s) the DALI®, and the Liposorber D® hemoperfusion systems, effective for apoB100- containing lipoproteins removal have been developed. All the above mentioned systems are established LDL-apheresis techniques referable to the generic definition of LDLa. However, this last definition cannot describe in an appropriate manner the removal of another highly atherogenic lipoprotein particle: the Lp(a). Thus it would be better to refer the above mentioned techniques to the wider scientific and technical concept of lipoprotein apheresis. Lipid apheresis - Lipoprotein apheresis - LDL-apheresis - Severe Dyslipidemia.