904 resultados para disordered proteins
Resumo:
Intrinsically disordered proteins, IDPs, are proteins that lack a rigid 3D structure under physiological conditions, at least in vitro. Despite the lack of structure, IDPs play important roles in biological processes and transition from disorder to order upon binding to their targets. With multiple conformational states and rapid conformational dynamics, they engage in myriad and often ``promiscuous'' interactions. These stochastic interactions between IDPs and their partners, defined here as conformational noise, is an inherent characteristic of IDP interactions. The collective effect of conformational noise is an ensemble of protein network configurations, from which the most suitable can be explored in response to perturbations, conferring protein networks with remarkable flexibility and resilience. Moreover, the ubiquitous presence of IDPs as transcriptional factors and, more generally, as hubs in protein networks, is indicative of their role in propagation of transcriptional (genetic) noise. As effectors of transcriptional and conformational noise, IDPs rewire protein networks and unmask latent interactions in response to perturbations. Thus, noise-driven activation of latent pathways could underlie state-switching events such as cellular transformation in cancer. To test this hypothesis, we created a model of a protein network with the topological characteristics of a cancer protein network and tested its response to a perturbation in presence of IDP hubs and conformational noise. Because numerous IDPs are found to be epigenetic modifiers and chromatin remodelers, we hypothesize that they could further channel noise into stable, heritable genotypic changes.
Resumo:
Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.
Resumo:
The potato virus A (PVA) genome linked protein (VPg) is a multifunctional protein that takes part in vital infection cycle events such as replication and movement of the virus from cell to cell. VPg is attached to the 5´ end of the genome and is carried in the tip structure of the filamentous virus particle. VPg is also the last protein to be cleaved from the polyprotein. VPg interacts with several viral and host proteins and is phosphorylated at several positions. These features indicate a central role in virus epidemiology and a requirement for an efficient but flexible mechanism for switching between different functions. -- This study examines some of the key VPg functions in more detail. Mutations in the positively charged region from Ala38 to Lys44 affected the NTP binding, uridylylation, and in vitro translation inhibition activities of VPg, whereas in vivo translation inhibition was not affected. Some of the data generated in this study implicated the structural flexibility of the protein in functional activities. VPg lacks a rigid structure, which could allow it to adapt conformationally to different functions as needed. A major finding of this study is that PVA VPg belongs to the class of ´intrinsically disordered proteins´ (IDPs). IDPs are a novel protein class that has helped to explain the observed lack of structure. The existence of IDPs clearly shows that proteins can be functional and adapt a native fold without a rigid structure. Evidence for the intrinsic disorder of VPg was provided by CD spectroscopy, NMR, fluorescence spectroscopy, bioinformatic analysis, and limited proteolytic digestion. The structure of VPg resembles that of a molten globule-type protein and has a hydrophobic core domain. Approximately 50% of the protein is disordered and an α-helical stabilization of these regions has been hypothesized. Surprisingly, VPg structure was stabilized in the presence of anionic lipid vesicles. The stabilization was accompanied by a change in VPg structure and major morphological modifications of the vesicles, including a pronounced increase in the size and appearance of pore or plaque like formations on the vesicle surface. The most likely scenario seems to be an α-helical stabilization of VPg which induces formation of a pore or channel-like structure on the vesicle surface. The size increase is probably due to fusion or swelling of the vesicles. The latter hypothesis is supported by the evident disruption of the vesicles after prolonged incubation with VPg. A model describing the results is presented and discussed in relation to other known properties of the protein.
Resumo:
Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a `society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TUFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.
Resumo:
Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).
Resumo:
The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.
Resumo:
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti-cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo- or sulfate-bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer-generated conformational ensembles shown here indicate that the last 30-40 residues in the C-terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C-terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B-inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins.
Resumo:
This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Resumo:
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.
Resumo:
New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.
Resumo:
Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N*) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration (C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N* states. Interestingly, the phase boundaries separating the folded and unfolded states at all C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N* with a disordered solvent-exposed amino-terminal beta-strand. The structure of the N* state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N* state, determined by the free energy gap separating the native structure and the N* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.
Resumo:
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D N-15,H-1]HSQC spectrum with two 2D spectra can result in approximate to 50% assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12kDa) and the 29kDa (268 residue) -subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.