728 resultados para dexamethasone immunosuppressed
Resumo:
The in vivo antifungal activity of the naphthoquinone beta-lapachone against disseminated infection by Cryptococcus neoformans was investigated. Swiss mice were immunosuppressed daily with dexamethasone (0.5 mg per mouse) intraperitoneally for 3 days, the procedure was repeated 4 days later, and the animals were then challenged intravenously with C. neoformans (10(6) CFU/mL) 1 week later. Seven days after infection, the mice were divided into groups and treated daily with beta-lapachone (10 mg/kg, iv) for 7 (N = 6) and 14 days (N = 10). Amphotericin B (0.5 mg/kg) was used as comparator drug and an additional group received PBS. Treatment with beta-lapachone cleared the yeast from the spleen and liver, and the fungal burden decreased approximately 10(4) times in the lungs and brain 14 days after infection when compared to the PBS group (P < 0.05). This result was similar to that of the amphotericin B-treated group. Protection was suggestively due to in vivo antifungal activity of this drug and apparently not influenced by activation of the immune response, due to similar leukocyte cell counts among all groups. This study highlights the prospective use of beta-lapachone for treatment of disseminated cryptococcosis.
Infecção experimental pelo Encephalitozoon cuniculi em camundongos imunossuprimidos com dexametasona
Resumo:
Objective Microsporidian Encephalitozoon cuniculi has been recognized as an opportunistic pathogen in immunosuppressed individuals, such as AIDS patients. The objective of the study was to develop pharmacologically immunosuppressed animals as a model of the natural occurring E. cuniculi infection.Methods Distint groups of adult Balb-C mice were immunosuppressed with different doses of dexamethasone (Dx, 3 or 5 mg/kg/day, intraperitoneal route - IP) and inoculated with E. cuniculi spores by IP route intraperitoneally. Control groups (inoculated animals but non-immunosuppressed and non-inoculated animals but immunosuppressed) were also used. The spores of E. cuniculi were previously cultivated in MDCK cells. The animals were sacrificed and necropsied at 7, 14, 21, 28 and 35 days post-inoculation. Tissue fragments were collected and processed for light microscopy studies, using Gram-chromotrope and hematoxylin-eosin staining techniques.Results In all immunosupressed and inoculated inoculated immunosuppressed mice,specially in those that received 5 mg/kg/day of dexamethasone, the most prominent necropsy findings were hepatomegaly and splenomegaly. The experimental inoculation resulted in a disseminated non-lethal infection, characterized by granulomatous lesions in several organs (liver lungs, kidneys, gut and brain) but notably in the hepatic tissue. Spores of E. cuniculi were only seen in few animals treated with 5 mg/kg/day of Dx at 35 days post-infection.Conclusions Microsporidiosis in Dx-immunosuppressed mice provides a useful model for studies of the microsporidial infection, resembling that one naturally occurring in immunodeficient individuals with AIDS.
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf). Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT. Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor. Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
The immune response in leishmaniasis may result in a polarization of the T lymphocyte subpopulation, altering cell phenotype and resulting in immune protection or disease exacerbation. Leishmania may persist in the body either during asymptomatic infections or after treatment, which represents high risk under immunosuppression. The objective of this study was to evaluate the effect of infection with immunosuppression by dexamethasone associated with pentoxifylline on animal weight, spleen weight, spleen and hepatic parasitic load and immunopathology, as well as the IFN-gamma and IL-10 production in spleen cell culture of Balb/c mice infected with Leishmania chagasi. The infection did not cause body weight gain in animals, but both the weight and size of the spleen were increased. The immunosuppression using dexamethasone associated with pentoxifylline affected body weight gain and spleen weight and size in both infected and non-infected animals. The immunosuppression did not significantly alter the course of the splenic or hepatic parasite burden. Dexamethasone and pentoxifylline significantly affected cytokine production, but did not influence the Th1/Th2 ratio in infected animals.
Resumo:
The immune response to leishmaniasis can result in a polarization of a subpopulation of T lymphocytes, which leads to a different cell phenotype and results in immune protection or exacerbation of the disease. Leishmanias persist in the body both in asymptomatic infections and after treatment, representing risks in terms of immunosuppression. The objective of this study was to evaluate the effects of infection and immunosuppression by dexamethasone associated with pentoxifylline on animal weight, spleen weight, the parasitic load in the spleen and liver, as well as the production of IFN-gamma and IL-10 in spleen cell culture of Balb/c mice infected with Leishmania chagasi. The infection did not alter animal weight gain, but spleen weight and size increased. The immunosuppression, induced by dexamethasone associated with pentoxifylline, affected animal weight gain and weight and size of the spleen (in infected and not infected animals). The immunosuppression did not significantly alter the course of the parasite burden in the spleen and liver. Dexamethasone and pentoxifylline affected the studied cytokine production, but not influenced on Th1/Th2 response in infected animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: The aim of this study was to assess radiographically the effect of photodynamic therapy (PDT) as an adjunctive treatment to scaling and root planing (SRP) on induced periodontitis in dexamethasone-induced immunosuppressed rats. Material and Methods: The animals were divided into 2 groups: ND group (n=60): saline treatment; D group (n=60): dexamethasone treatment. In both ND and D groups, periodontal disease was induced by the placement of a ligature in the left first mandibular molar. After 7 days, ligature was removed and all animals received SRP, being divided according to the following treatments: SRP: saline and PDT: phenothiazinium dye (TBO) plus laser irradiation. Ten animals per treatment were killed at 7, 15 and 30 days. The distance between the cementoenamel junction and the height of the alveolar bone crest in the mesial surface of the mandibular left first molars was determined in millimeters in each radiograph. The radiographic values were analyzed statistically by ANOVA and Tukey's test at a p value <0.05. Results: Intragroup radiographic assessment (ND and D groups) showed that there was statistically significant less bone loss in the animals treated with PDT in all experimental periods compared to those submitted to SRP. Intergroup radiographic analysis (ND and D groups) demonstrated that there was greater bone loss in the ND group treated with SRP compared to the D group treated with PDT at 7 and 30 days. Conclusion: PDT was an effective adjunctive treatment to SRP on induced periodontitis in dexamethasone-induced immunosuppressed rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.
Resumo:
The aim of this study was to investigate the interference of a daily treatment of dexamethasone in the pulmonary cycle of Strongyloides venezuelensis infection in rats. Three principal effects were found: 1) increased alveolar hemorrhagic inflammation provoked by the passage of larvae into alveolar spaces; 2) significant decrease of eosinophil and mast cell migration to the axial septum of the lungs; and 3) impaired formation of the reticular fiber network, interfering with granuloma organization. This study showed that the use of drugs with immunomodulatory actions, such as dexamethasone, in addition to interfering with the morbidity from the pulmonary cycle of S. venezuelensis infection, may contribute to showing the mechanisms involved in its pathogenesis.
Resumo:
The aim of this study was to investigate the immunomodulatory effects of glucocorticoids on the immune response to Strongyloides venezuelensis in mice. Balb/c mice were infected with S. venezuelensis and treated with Dexamethasone (Dexa) or vehicle. Dexa treatment increased circulating blood neutrophil numbers and inhibited eosinophil and mononuclear cell accumulation in the blood, bronchoalveolar, and peritoneal fluid compared with control animals. Moreover, Dexa decreased tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-3 (IL-3), IL-4, IL-5, IL-10, and IL-12 production in the lungs and circulating immunoglobulin G1. (IgG1), IgG2a, and IgE antibody levels while increasing the overall parasite burden in the feces and intestine. Dexa treatment enhanced the fertility of female nematodes relative to untreated and infected mice. In summary, the alterations in the immune response induced by Dexa resulted in a blunted, aberrant immune response associated with increased parasite burden. This phenomenon is similar to that observed in S. stercoralis-infected humans who are taking immunosuppressive or antiinflammatory drugs, including corticosteroids.
Resumo:
Using light and electron microscopic histological and immunocytochemical techniques, we investigated the effects of the glucocorticoid dexamethasone on T cell and macrophage apoptosis in the central nervous system (CNS) and peripheral nervous system (PNS) of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP). A single subcutaneous injection of dexamethasone markedly augmented T cell and macrophage apoptosis in the CNS and PNS and microglial apoptosis in the CNS within 6 hours (h). Pre-embedding immunolabeling revealed that dexamethasone increased the number of apoptotic CD5+ cells (T cells or activated B cells), αβ T cells, and CD11b+ cells (macrophages/microglia) in the meninges, perivascular spaces, and CNS parenchyma. The induction of increased apoptosis was dose-dependent. Daily dexamethasone treatment suppressed the neurological signs of EAE. However, the daily injection of a dose of dexamethasone (0.25 mg/kg). which, after a single dose, did not induce increased apoptosis in the CNS or PNS, was as effective in inhibiting the neurological signs of EAE as the high dose (4 mg/kg), which induced a marked increase in apoptosis. This indicates that the beneficial clinical effect of glucocorticoid therapy in EAE does not depend on the induction of increased apoptosis. The daily administration of dexamethasone for 5 days induced a relapse that commenced 5 days after cessation of treatment, with the severity of the relapse tending to increase with dexamethasone dosage.
Resumo:
Possible mechanisms of adverse drug effects in asthma include worsening of cellular hyperplasia and stimulation of extracellular matrix deposition. In this study, salbutamol, dexamethasone and beclomethasone were investigated to ascertain their ability to induce mitogenesis and stimulate fibronectin expression in cultured canine airway smooth muscle cells. In cells maintained in serum-free media for 72 h, salbutamol(1 nM-10 mu M) caused mitogenesis. The control cells had 2.57 +/- 0.34 x 10(5) cells per mi (mean +/- SEM, N = 13), while salbutamol (1 mu M) caused a maximal increase in cell number to 3.57 +/- 0.23 x 10(5) cells/ml (P < 0.01). In cells stimulated to replicate by addition of either fetal bovine serum or canine serum, no additional mitogenic effect of salbutamol was seen. Salbutamol did not have a detectable quantitative effect on fibronectin matrix expression. The glucocorticoids, beclomethasone and dexamethasone, significantly altered fibronectin expression by cultured airway smooth muscle cells. Beclomethasone increased fibronectin expression, while dexamethasone decreased expression.
Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR?
Resumo:
The treatment of microcystin-LR (MCYST-LR)-induced lung inflammation has never been reported Hence. LASSBio 596, an anti-Inflammatory drug candidate, designed as symbiotic agent that modulates TNF-alpha levels and inhibits phosphodiesterase types 4 and 5, or dexamethasone were tested in this condition Swiss mice were intraperitoneally (i p) injected with 60 mu l of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 mu g/kg). 6 h later they were treated (i p.) with saline (TOX), LASSB10 596 (10 mg/kg, L596), or dexamethasone (1 mg/kg, 0.1 mL, DEXA). 8 h after MCYST-LR injection, pulmonary mechanics were determined, and lungs and livers prepared for histopathology, biochemical analysis and quantification of MCYST-LR. TOX showed significantly higher lung impedance than CTRL and L596, which were similar. DEXA could only partially block the mechanical alterations. In both TOX and DEXA alveolar collapse and inflammatory cell influx were higher than in CTRL and L596, being LASSB10 596 more effective than dexamethasone. TOX showed oxidative stress that was not present in an and L596, while DEXA was partially efficient. MCYST-LR was detected in the livers of all mice receiving MCYST-LR and no recovery was apparent In conclusion, LASSBio 596 was more efficient than dexamethasone in reducing the pulmonary functional impairment induced by MCYST-LR. (C) 2010 Elsevier Ltd. All rights reserved