977 resultados para dental implant-abutment design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. This study aimed to investigate the stress distribution in screwed implant-supported prostheses with different implant-abutment connections by using a photoelastic analysis. Materials and methods. Four photoelastic models were fabricated in PL-2 resin and divided according to the implant-abutment connection (external hexagon (EH) and Morse taper (MT) implants (3.75 × 11.5 mm)) and the number crowns (single and 3-unit piece). Models were positioned in a circular polariscope and 100-N axial and oblique (45) loading were applied in the occlusal surface of the crowns by using a universal testing machine. The stresses were photographically recorded and qualitatively analyzed using software (Adobe Photoshop). Results. Under axial loading, the MT implants exhibited a lower number of fringes for single-unit crowns than EH implants, whereas for a 3-unit piece the MT implants showed a higher number of fringes vs EH implants. The oblique loading increased the number of fringes for all groups. Conclusion. In conclusion, the MT implant-abutment connection reduced the amount of stress in single-unit crowns, for 3-unit piece crowns the amount of stress was lower using an external hexagon connection. The stress pattern was similar for all groups. Oblique loading promoted a higher stress concentration than axial loading. © Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The purpose of this study is to analyze the tension distribution on bone tissue around implants with different angulations (0 degrees, 17 degrees, and 30 degrees) and connections (external hexagon and tapered) through the use of three-dimensional finite element and statistical analyses.Methods: Twelve different configurations of three-dimensional finite element models, including three inclinations of the implants (0 degrees, 17 degrees, and 30 degrees), two connections (an external hexagon and a tapered), and two load applications (axial and oblique), were simulated. The maximum principal stress values for cortical bone were measured at the mesial, distal, buccal, and lingual regions around the implant for each analyzed situation, totaling 48 groups. Loads of 200 and 100 N were applied at the occlusal surface in the axial and oblique directions, respectively. Maximum principal stress values were measured at the bone crest and statistically analyzed using analysis of variance. Stress patterns in the bone tissue around the implant were analyzed qualitatively.Results: The results demonstrated that under the oblique loading process, the external hexagon connection showed significantly higher stress concentrations in the bone tissue (P < 0.05) compared with the tapered connection. Moreover, the buccal and mesial regions of the cortical bone concentrated significantly higher stress (P < 0.005) to the external hexagon implant type. Under the oblique loading direction, the increased external hexagon implant angulation induced a significantly higher stress concentration (P = 0.045).Conclusions: The study results show that: 1) the oblique load was more damaging to bone tissue, mainly when associated with external hexagon implants; and 2) there was a higher stress concentration on the buccal region in comparison to all other regions under oblique load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants (3.5 x 11 mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at 45 degrees inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated. [J Adv Prosthodont 2012;4:158-61]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study evaluated the reliability and failure modes of implants with a microthreaded or smooth design at the crestal region, restored with screwed or cemented crowns. The postulated null hypothesis was that the presence of microthreads in the implant cervical region would not result in different reliability and strength to failure than smooth design, regardless of fixation method, when subjected to step-stress accelerated life-testing (SSALT) in water. Materials and methods: Eighty four dental implants (3.3 × 10 mm) were divided into four groups (n = 21) according to implant macrogeometric design at the crestal region and crown fixation method: Microthreads Screwed (MS); Smooth Screwed (SS); Microthreads Cemented (MC), and Smooth Cemented (SC). The abutments were torqued to the implants and standardized maxillary central incisor metallic crowns were cemented (MC, SC) or screwed (MS, SS) and subjected to SSALT in water. The probability of failure versus cycles (90% two-sided confidence intervals) was calculated and plotted using a power law relationship for damage accumulation. Reliability for a mission of 50,000 cycles at 150 N (90% 2-sided confidence intervals) was calculated. Differences between final failure loads during fatigue for each group were assessed by Kruskal-Wallis along with Benferroni's post hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value (confidence interval range) derived from use level probability Weibull calculation of 1.30 (0.76-2.22), 1.17 (0.70-1.96), 1.12 (0.71-1.76), and 0.52 (0.30-0.89) for groups MC, SC, MS, and SS respectively, indicated that fatigue was an accelerating factor for all groups, except for SS. The calculated reliability was higher for SC (99%) compared to MC (87%). No difference was observed between screwed restorations (MS - 29%, SS - 43%). Failure involved abutment screw fracture for all groups. The cemented groups (MC, SC) presented more abutment and implant fractures. Significantly higher load to fracture values were observed for SC and MC relative to MS and SS (P < 0.001). Conclusion: Since reliability and strength to failure was higher for SC than for MC, our postulated null hypothesis was rejected. © 2012 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgroud: The influence of diamond-like-carbon (DLC) films on bacterial leakage through the interface between abutments and dental implants of external hexagon (EH) and internal hexagon (IH) was evaluated. Film deposition was performed by PECVD (Plasma Enhanced Chemical Vapor Deposition). Sets of implants and abutments (N=180, n=30) were divided according to the connection design and the treatment of the abutment base: (1) no treatment (control); (2) DLC film deposition, and (3) Ag-DLC film deposition. Under sterile conditions, 1 µL of Enterococcus faecalis was inoculated inside the implants, and abutments were tightened. The sets were tested for immediate external contamination, suspended in test tubes containing sterile culture broth, and followed-up for five days. Turbidity of the broth indicated bacterial leakage. At the end of the period, the abutments were removed and the internal content of the implants was collected with paper points and plated in Petri dishes. They were incubated for 24 h for bacterial viability assessment and colony-forming unit (CFU) counting. Bacterial leakage was analyzed by Chi-square and Fisher exact tests (α=5%). The percentage of bacterial leakage was 16.09% for EH implants and 80.71% for IH implants (P<0.0001). The bacterial load was higher inside these implants (P=0.000). The type of implant significantly influenced the results (P=0.000), whereas the films did not (P=0.487). We concluded that: (1) IH implants showed a higher frequency of bacterial leakage and (2) the DLC and Ag-DLC films did not significantly reduce the frequency of bacterial leakage and bacteria load inside the implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the etiology, clinical manifestations, and treatment options of dental implants fractures through a literature review and to relate a clinical report. Methods: A literature review was performed using the Medline database and this paper describes a case demonstrating the management of implant fracture. Twenty two articles were selected in the present literature review. Results: Nowadays the use of dental implants to rehabilitate completely and partially edentulous patients became the best treatment option; however, this treatment is suitable to failure. The fracture of implant body is a possible complication. The fracture of implant body is a late complication and is related to the failure in implant design or material, non-passive fitting of the prosthetic crown and overloading. Clinically, prosthesis instability and spontaneous bleeding are observed. Three options of treatment have been indicated: complete removal of implant fragment, maintenance of implant fragment, and surface preparation of the fragment with insertion of a new abutment. Conclusion: The literature indicates the complete removal of the fragment as the best treatment option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: One way to evaluate various implant restorations is to measure the amount of bone change that occurs at the crestal bone. The objective of this study was to histologically evaluate the alveolar bone change around a bone-level, non-matching implant-abutment diameter configuration that incorporated a horizontal offset and a Morse taper internal connection. METHODS: The study design included extraction of all mandibular premolars and first molars in five canines. After 3 months, 12 dental implants were placed at three levels in each dog: even with the alveolar crest, 1 mm above the alveolar crest, and 1 mm below the alveolar crest. The implants were submerged on one side of the mandible. On the other side, healing abutments were exposed to the oral cavity (non-submerged). Gold crowns were attached 2 months after implant placement. The dogs were sacrificed 6 months postloading, and specimens were processed for histologic and histometric analyses. RESULTS: Evaluation of the specimens indicated that the marginal bone remained near the top of the implants under submerged and non-submerged conditions. The amount of bone change for submerged implants placed even with, 1 mm below, and 1 mm above the alveolar crest was -0.34, -1.29, and 0.04 mm, respectively (negative values indicate bone loss). For non-submerged implants, the respective values were -0.38, -1.13, and 0.19 mm. For submerged and non-submerged implants, there were significant differences in the amount of bone change among the three groups (P <0.05). The percentage of bone-to-implant contact for submerged implants was 73.3%, 71.8%, and 71.5%. For non-submerged implants, the respective numbers were 73.2%, 74.5%, and 76%. No significant differences occurred with regard to the percentage of bone contact. CONCLUSIONS: Minimal histologic bone loss occurred when dental implants with non-matching implant-abutment diameters were placed at the bone crest and were loaded for 6 months in the canine. The bone loss was significantly less (five- to six-fold) than that reported for bone-level implants with matching implant-abutment diameters (butt-joint connections).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments. Int J Prosthodont 2009;22:283-286.