996 resultados para defense behavior
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study was carried out at the UNESP Rio Claro campus (SP), where biotests consisting of simulated ant attacks were performed in colonies of Mischocyttarus cerberus. The behaviors of the wasps were recorded with a camcorder, for further analysis. This analysis was done using the Mann-Whitney U test and the Principal Component Analysis. In the pre-emergence development stage, colonies with a single foundress defend the nest only after the first larvae appear. When there are only eggs in the nest, the wasp abandons the nest. Before leaving, the wasp rubs its gaster against the nest, releasing the ant repellent secretion. When the nest contains larvae or larvae and pupae, the foundress defends the colony, vibrating its wings, pumping her abdomen and biting the ant.
Resumo:
Anurans are known to feign death as a way to avoid or minimize the risk of predation. However, information on this defensive strategy is scattered and we believe that there is more than one behaviour type referred to as thanatosis. Here we review the literature, add original data, and propose definitions and new names that complement the present knowledge on the subject. We collected information on 334 individuals of 99 species in 16 families and grouped the recorded displays into two categories of tonic immobility: (1) thanatosis, death-feigning, or playing possum, and (2) shrinking or contracting. These two categories are treated as different behaviour types because of the display pattern (position of fore- and hindlimbs, eye opening), presence of skin toxins (shrinking is mostly displayed by toxic species, whereas thanatosis is mostly displayed by non-toxic species), social context (interaction with predators), and their putative or actual functions. © 2010 Taylor & Francis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.
Resumo:
Although studies classify the polygynous mating system of a given species into female defense polygyny (FDP) or resource defense polygyny (RDP), the boundary between these two categories is often slight. Males of some species may even shift between these two types of polygyny in response to temporal variation in social and environmental conditions. Here, we examine the mating system of the Neotropical harvestman Acutisoma proximum and, in order to assess if mate acquisition in males corresponds to FDP or RDP, we tested four contrasting predictions derived from the mating system theory. At the beginning of the reproductive season, males fight with other males for the possession of territories on the vegetation where females will later oviposit, as expected in RDP. Females present a marked preference for specific host plant species, and males establish their territories in areas where these host plants are specially abundant, which is also expected in RDP. Later in the reproductive season, males reduce their patrolling activity and focus on defending individual females that are ovipositing inside their territories, as what occurs in FDP. This is the first described case of an arachnid that exhibits a shift in mating system over the reproductive season, revealing that we should be cautious when defining the mating system of a species based on few observations concentrated in a brief period.
Resumo:
Animals faced with conflicting cues, such as predatory threat and a given rewarding stimulus, must make rapid decisions to engage in defensive versus other appetitive behaviors. The brain mechanisms mediating such responses are poorly understood. However, the periaqueductal gray (PAG) seems particularly suitable for accomplishing this task. The PAG is thought to have, at least, two distinct general roles on the organization of motivated responses, i.e., one on the execution of defensive and reproductive behaviors, and the other on the motivational drive underlying adaptive responses. We have presently examined how the PAG would be involved in mediating the behavioral choice between mutually incompatible behaviors, such as reproduction or defense, when dams are exposed to pups and cat odor. First, we established the behavioral protocol and observed that lactating rats, simultaneously exposed to pups and cat odor, inhibited maternal behavior and expressed clear defensive responses. We have further revealed that cat odor exposure up-regulated Fos expression in the dorsal PAG, and that NMDA cytotoxic lesions therein were able to restore maternal responses, and, at the same time, block defensive responsiveness to cat odor. Potential paths mediating the dorsal PAG influences on the inhibition of appetitive (i.e., retrieving behavior) and consummatory (i.e., nursing) maternal responses are discussed. Overall, we were able to confirm the dual role of the PAG, where, in the present case, the dorsal PAG, apart from organizing defensive responses, also appears to account for the behavioral inhibition of non-defensive responses. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work aimed at evaluating the aggressive response of Polybia sericea, incited by mechanical means, as well as collecting information on the biological and population parameters of this species in Caatinga environments. There were positive correlations (P < 0.05) between the number of aggressors and the number of eggs, larvae and adults present in the nests. These results showed that the magnitude of the defense response exhibited by P. sericea is proportional to the energetic investment carried out by the colony in making young forms. The positive significant correlation between the number of aggressors and the total number of adults of the colony corroborates the hypothesis that colonies with a large population of adults have greater potential to perform what is called defensive altruism.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Suicidal altruism has been reported for some species of eusocial insects, in which the individual dies in defense of the society. The termites of the genus Ruptitermes are known for the suicidal behavior of the workers which liberate a sticky defensive secretion by body bursting. In the present paper it is given a new interpretation of the defense glands of Neotropical Ruptitermes based on the morphological analysis of three species collected at Rio Claro, SP, Brazil. Before the current study, the suicidal defensive behavior was attributed to the dehiscence of the salivary gland reservoirs. The defense or dehiscent glands of Neotropical Ruptitermes are pair structures rounded in shape that are independent of the salivary glands. The dehiscent glands consist of multiple secretory units that are kept together by thin connective tissue. Each secretory unit is composed of one cell generally with one peripheral nucleus and characteristic secretion. The three species studied here present some histological differences in the secretory units, probably related to the chemical composition of the secretion.
Resumo:
The objectives of the present study were to verify if the males of the wasp Mischocyttarus cerberus participate in defense of the nest as they react to attack by ants, and to observe if they use chemical defense. First, wasps were stimulated with an empty pair of tweezers and a second stimulation was done with a pair of tweezers containing an ant, Camponotus crassus. The behaviors of the wasps were recorded and analyzed. The males can participate in defense of the nest, presenting some aggressive behaviors, even so, most of the time they ignore the stimulation, hide behind the nest and stay immobile.
Resumo:
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.