979 resultados para deep level centres


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the detailed investigations on platinum related midgap state corresponding to E-c -0.52 eV probed by deep level transient spectroscopy. By irradiating the platinum doped samples with high-energy (1.1 MeV) gamma rays, we observed that the concentration of the midgap state increases and follows a square dependence with irradiation dose. However, the concentration of the acceptor corresponding to E-c -20.28 eV remained constant. Furthermore, from the studies on passivation by atomic hydrogen and thermal reactivation, we noticed that the E-c -0.52 eV level reappears in the samples annealed at high temperatures after hydrogenation. The interaction of platinum with various defects and the qualitative arguments based on the law of mass action suggest that the platinum related midgap defect might possibly correspond to the interstitial platinum-divacancy complex (V-Pt-V).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inexpensive and simple circuit to aid the direct measurement of majority carrier capture cross sections of impurity levels in the band gap of a semiconductor by the variable width filling pulse technique is presented. With proper synchronisation, during the period of application of the pulse, the device is disconnected from the capacitance meter to avoid distortion of the pulse and is reconnected again to the meter to record the emission transient. Modes of operation include manual triggering for long emission transients, repetitive triggering for isothermal and DLTS measurements and the DLTS mode which is to be used with signal analysers that already provide a synchronising pulse for disconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the two sampling gate positions, and their widths and the integrator response times on the position, height, and shape of the peaks obtained in a double‐channel gated‐integrator‐based deeplevel transient spectroscopy (DLTS) system are evaluated. The best compromise between the sensitivity and the resolution of the DLTS system is shown to be obtained when the ratio of the two sampling gate positions is about 20. An integrator response time of about 100 ms is shown to be suitable for practical values of emission time constants and heating rates generally used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The barrier height of MIS tunnel diodes is studied considering the effect of deep impurities. It is shown that the barrier height of a given MIS-system can be controlled by changing the density and the activation energy of the defect level. The study leads to the conclusion that deep impurities of character opposite to shallow impurities enhance the barrier height. On the other hand, the barrier height is lowered when the type of the deep impurities is the same as that of shallow impurities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deeplevel transient spectroscopy (DLTS) technique is reported for determining the capture cross‐section activation energy directly. Conventionally, the capture activation energy is obtained from the temperature dependence of the capture cross section. Capture cross‐section measurement is often very doubtful due to many intrinsic errors and is more critical for nonexponential capture kinetics. The essence of this technique is to use an emission pulse to allow the defects to emit electrons and the transient signal from capture process due to a large capture barrier was analyzed, in contrast with the emission signal in conventional DLTS. This technique has been applied for determining the capture barrier for silicon‐related DX centers in AlxGa1−xAs for different AlAs mole fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in annealed InP have been studied by using photoluminescence spectroscopy (PL), thermally stimulated current (TSC), deep level transient spectroscopy (DLTS), and positron annihilation lifetime (PAL). A noticeable broad PL peak centered at 1.3 eV has been observed in the InP sample annealed in iron phosphide ambient. Both the 1.3 eV PL emission and a defect at E-C-0.18 eV correlate with a divacancy detected in the annealed InP sample. The results make a divacancy defect and related property identified in the annealed InP. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level transient spectroscopy measurements were performed on the metal organic chemical vapor deposition epitaxially grown GaN before and after the implantation with Er. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300, 0.188, 0.600 and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees for 30 min. The origins of the deep defect levels were discussed. The photoluminescence (PL) properties of Er-implanted GaN thin films were also studied. After annealing at 900 degrees for 30 min in a nitrogen flow, Er-related 1.54 mu m luminescence peaks could be observed for the Er-implanted GaN sample. Moreover, the energy-transfer and recombination processes of the Er-implanted GaN film were described. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under identical preparation conditions, Au/GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. (c) 2006 American Institute of Physics.