999 resultados para crystalline Bi-2212
Resumo:
A bifilar Bi-2212 bulk coil with parallel shunt resistor was tested under fault current condition using a 3 MVA single-phase transformer in a 220 V-60 Hz line achieving fault current peak of 8 kA. The fault current tests are performed from steady state peak current of 200 A by applying controlled short circuits up to 8 kA varying the time period from one to six cycles. The test results show the function of the shunt resistor providing homogeneous quench behavior of the HTS coil besides its intrinsic stabilizing role. The limiting current ratio achieves a factor 4.2 during 5 cycles without any degradation.
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A bifilar Bi-2212 bulk coil with parallel shunt resistor was tested under fault current condition using a 3 MVA single-phase transformer in a 220 V-60 Hz line achieving fault current peak of 8 kA. The fault current tests are performed from steady state peak current of 200 A by applying controlled short circuits up to 8 kA varying the time period from one to six cycles. The test results show the function of the shunt resistor providing homogeneous quench behavior of the HTS coil besides its intrinsic stabilizing role. The limiting current ratio achieves a factor 4.2 during 5 cycles without any degradation.
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.
Resumo:
The objective of the present work is to study the effect of rare-earth (RE) doping on the superconducting properties of (Bi,Pb)-2212 system and to develop novel superconductors in the system with improved properties, especially, the self- and in-field critical current densities so as to use them for practical applications. This dissertation describes a range of findings in Bi-based superconductor using the cationic substitution of rare earth (RE) elements. Most of the experiments reported here take advantage of the difference in the valency and ionic radii of dopant and doping site.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
In this work we studied the synthesis of BSCCO-2212 superconducting phase associating a quite similar method developed by Pechini with the microwave-assisted hydrothermal method. To study the influence of the microwaves on the properties of BSCCO system, we synthesized two samples by such method. For one sample we used carbonates and for the other one we used nitrates as chemical reagents. We also produced a reference sample just using carbonates by Pechini's method to compare their morphological and superconducting properties. The structural properties of the samples were analyzed by scanning electron microscopy and X-ray diffraction. The Bi-2212 phase is predominant in all samples and despites the nitrates-like sample has a broader distribution of grain size in comparison with the reference sample, its magnetic behaviour is closer to that presented by the reference one.
Resumo:
The spark plasma sintering (SPS) technique, by using a compacting pressure of 50 MPa, was used to consolidate pre-reacted powders of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta (Bi-2223). The influence of the consolidation temperature, T-D, on the structural and electrical properties has been investigated and compared with those of a reference sample synthesized by the traditional solid-state reaction method and subjected to the same compacting pressure. From the X-ray diffraction patterns, performed in both powder and pellet samples, we have found that the dominant phase is the Bi-2223 in all samples but traces of the Bi2Sr2CaCu2O8+x (Bi-2212) were identified. Their relative density were similar to 85% of the theoretical density and the temperature dependence of the electrical resistivity, rho(T), indicated that increasing T-D results in samples with low oxygen content because the SPS is performed in vacuum. Features of the rho(T) data, as the occurrence of normal-state semiconductor-like behavior of rho(T) and the double resistive superconducting transition, are consistent with samples comprised of grains with shell-core morphology in which the shell is oxygen deficient. The SPS samples also exhibited superconducting critical current density at 77 K, J(c)(77K), between 2 and 10A/cm(2), values much smaller than similar to 22A/cm(2) measured in the reference sample. Reoxygenation of the SPS samples, post-annealed in air at different temperatures and times, was found to improve their microstructural and transport properties. Besides the suppression of the Bragg peaks belonging to the Bi-2212 phase, the superconducting properties of the post-annealed samples and particularly J(c)(77K) were comparable or better than those corresponding to the reference sample. Post-annealed samples at 750 degrees C for 5min exhibited J(c)(77K) similar to 130A/cm(2) even when uniaxially pressed at only 50 MPa. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768257]
Resumo:
Monofilamentary tapes (150 pm thickness) were prepared by swaging and rolling silver tubes containing the Bi:2212 ceramic (granulation below 20 mum) and the silver powder (about 0.8 mum). The study has been made, among other samples, on tapes with nominal proportions of 0, 10 and 20 wt.% of silver. The samples were characterized by SEM, and by electrical measurements under varying applied magnetic field. The measurements of J(c) showed that the addition of 10 wt.% silver powder is very beneficent to this property, doubling the obtained values at 60 K, while the 20 wt.% tape presented very low J(c). The tape with no silver content showed to have a J(c) as high as 2.2 x 10(5) A/cm(2), at 4.2 K, zero applied magnetic field. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The addition of two compounds, calcium silicate and calcium zirconate was tested in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method. The wires were treated in an atmosphere of O-2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. It was found that the addition of calcium silicate or zirconate promoted higher transition temperatures, up to 116 K for BSCCO with 1wt.% CaSiO3. The critical current densities determined by transport and magnetization measurements were improved in comparison with the wires without any addition.
Resumo:
The addition of two compounds, calcium silicate and calcium zirconate was tested, in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method, which were successfully tested previously in processing chips. The wires were treated in an atmosphere of O2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. As the results, transition temperatures were higher than the expected for this stage, ranged from 105K (BSCCO880) to 116K (+Si883). The critical current densities encountered in transport and magnetization measurements were improved in comparison with the wires without addition.
Resumo:
To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca1-xYbxCu2Oy form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)O-x and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO(2) = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO(2) = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO(2) = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi2Sr2Ca1-xYbxCu2Oy thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest T-c(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O-2, respectively.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS