985 resultados para critical behavior
Resumo:
By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c(0)=0.176 500 5(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda(c)=(1-c(0))/c(0)=4.665 71(3) and a net transmissibility of (1-c(0))/(1+3c(0))=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.
Resumo:
We report accurate magnetization measurements on the spin-gap compound NiCl(2)-4SC (NH(2))(2) around the low portion of the magnetic induced phase ordering. The critical density of the magnetization at the phase boundary is analyzed in terms of a Bose-Einstein condensation (BEC) of bosonic particles, and the boson interaction strength is obtained as upsilon(0)=0.61 meV. The detailed analysis of the magnetization data across the transition leads to the conclusion for the preservation of the U(1) symmetry, as required for BEC. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3055265]
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.
Resumo:
The critical behavior of a system constituted by molecules with a preferred symmetry axis is studied by means of a Monte Carlo simulation of a simplified two-dimensional model. The system exhibits two phase transitions, associated with the vanishing of the positional order of the center of mass of the molecules and with the orientational order of the symmetry axis. The evolution of the order parameters and the specific heat is also studied. The transition associated with the positional degrees of freedom is found to change from a second-order to a first-order behavior when the two phase transitions are close enough, due to the coupling with the orientational degrees of freedom. This fact is qualitatively compared with similar results found in pure liquid crystals and liquid-crystal mixtures.
Resumo:
The formation of a hollow cellular sphere is often one of the first steps of multicellular embryonic development. In the case of Hydra, the sphere breaks its initial symmetry to form a foot-head axis. During this process a gene, ks1, is increasingly expressed in localized cell domains whose size distribution becomes scale-free at the axis-locking moment. We show that a physical model based solely on the production and exchange of ks1-promoting factors among neighboring cells robustly reproduces the scaling behavior as well as the experimentally observed spontaneous and temperature-directed symmetry breaking.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.
Resumo:
The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.
Resumo:
The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.
Resumo:
We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.