989 resultados para credit analysis
Resumo:
At head of title: Program participants and departmental staff.
Resumo:
The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Dissertação de mestrado em Direito dos Contratos e da Empresa
Resumo:
A análise de risco de crédito na actividade bancária é um tema bastante discutido no contexto das decisões das instituições financeiras. O presente estudo tem como objectivo demonstrar o processo de análise de crédito e avaliação do risco em instituições bancárias, evidenciando a utilização do modelo de rating. A implementação do acordo de Basileia veio dar uma nova forma ao relacionamento do sector bancário para com os seus clientes, estabelecendo regras no que respeita à concessão de crédito e avaliação do risco. Com isto as instituições passaram a ter uma maior preocupação em gerir o crédito e o risco inerentes a cada operação, apostando em ferramentas metodológicas adequadas ao processo creditício. As instituições bancárias acabaram por criar departamentos de risco, colocando a gestão de crédito e de risco nas mãos de profissionais especializados, agindo sobre regras e padrões internacionais uniformes. De realçar que o processo de análise de crédito envolve diversas etapas, cujo objectivo é avaliar o risco de incumprimento associado ao tomador de crédito, bem como suas consequências junto de quem concede o crédito. O rating de crédito é um instrumento cujo objectivo é atribuir uma nota que sintetiza o risco de incumprimento no pagamento de crédito, com o objectivo de reduzir a subjectividade associada ao processo de avaliação do risco. Da pesquisa realizada, constatou-se perante entrevistas junto das instituições bancárias locais que o modelo de rating ainda não é muito utilizado no nosso mercado bancário, e os que o utilizam tomam-no apenas como um indicador de risco. Segundo os entrevistados a realidade das PME’s Cabo-Verdianas não é adequada para a implementação de um modelo tão objectivo. The analysis of credit risk in banking activity is a widely discussed topic, and within the context of decisions of financial institutions. The present study aims to demonstrate the process of credit analysis and risk assessment in banking institutions, evidencing the use of internal rating model. The implementation of Basel II Accord has given a new shape to the relationship of the banking sector with its customers, establishing rules regarding the granting of credit and risk assessment. Consequently, institutions now have a greater concern in managing credit and the risk inherent to each transaction, relying on methodological tools that are appropriate to the credit process. The banks end up creating risk departments, placing credit risk management in the hands of skilled professionals that act conforming to international rules and standards. It should be noted that the credit analysis process involves several steps, aiming at assessing the default risk associated with credit borrower, and its consequences to whom grants credit. The credit rating is a process with the objective of assigning a grade, which summarizes the risk of default in payment of credit, in order to reduce the subjectivity associated with the process of risk assessment. The survey undertaken through interviews with local banking institutions showed that the rating model is not yet widely used in our banking market, and that the banks that actually use it, only do it as an indicator of risk. According to those interviewed, the reality of SMEs in Cape Verde is not suitable for the implementation of a model with such objectivity.
Resumo:
Evolution is present in world dynamics. And it is just in such transformational environment where companies have been encapsulated. In an economy of knowledge, physical assets alone are unable to provide profits to meet shareholders' demands. Now there comes an invisible component with the purpose of defining strategies and impelling results: Intangible Assets. Banking financing systems, however, have not kept pace with this knowledge revolution and its resulting new income generation techniques. Credit analysis methods for most financing agents would not employ any intangible parameters in their methodology of study as yet. This paper seeks to discuss the importance of intangible assets by focusing their role of influencial factor in decisions to finance technology-based companies. By studying the credit risk classification system employed by FINEP, Brazil's Federal Agency for innovation development, we wished to suggest indicators for intangibles which might be put to use in the Financiadora.
Resumo:
Esta dissertação busca introduzir no Modelo de Análise de Crédito dos Bancos Comerciais alguns fatores estratégicos fundamentais para boa avaliação e defElrimento de uma operação de crédito de curto prazo. Para este fim foi elaborado um modelo Rating que tem como objetivo levar em consideração além da análise cadastral, econômico-financeira e das garantias, uma visão de todo o conjunto da empresa, dando um peso fundamental na estratégia de atuélção analisando \a competitividade , o ambiente interno e externo para que se possa chegar a um número que irá determinar o deferimento ou não da operação, dentro de parâmetros de risco definido pela instituição financeira detontora do recurso, cumprindo as normas do Sistema Financeiro Nacional.
Resumo:
Considering the relevance of researches concerning credit risk, model diversity and the existent indicators, this thesis aimed at verifying if the Fleuriet Model contributes in discriminating Brazilian open capital companies in the analysis of credit concession. We specifically intended to i) identify the economic-financial indicators used in credit risk models; ii) identify which economic-financial indicators best discriminate companies in the analysis of credit concession; iii) assess which techniques used (discriminant analysis, logistic regression and neural networks) present the best accuracy to predict company bankruptcy. To do this, the theoretical background approached the concepts of financial analysis, which introduced themes relative to the company evaluation process; considerations on credit, risk and analysis; Fleuriet Model and its indicators, and, finally, presented the techniques for credit analysis based on discriminant analysis, logistic regression and artificial neural networks. Methodologically, the research was defined as quantitative, regarding its nature, and explanatory, regarding its type. It was developed using data derived from bibliographic and document analysis. The financial demonstrations were collected by means of the Economática ® and the BM$FBOVESPA website. The sample was comprised of 121 companies, being those 70 solvents and 51 insolvents from various sectors. In the analyses, we used 22 indicators of the Traditional Model and 13 of the Fleuriet Model, totalizing 35 indicators. The economic-financial indicators which were a part of, at least, one of the three final models were: X1 (Working Capital over Assets), X3 (NCG over Assets), X4 (NCG over Net Revenue), X8 (Type of Financial Structure), X9 (Net Thermometer), X16 (Net Equity divided by the total demandable), X17 (Asset Turnover), X20 (Net Equity Profitability), X25 (Net Margin), X28 (Debt Composition) and X31 (Net Equity over Asset). The final models presented setting values of: 90.9% (discriminant analysis); 90.9% (logistic regression) and 97.8% (neural networks). The modeling in neural networks presented higher accuracy, which was confirmed by the ROC curve. In conclusion, the indicators of the Fleuriet Model presented relevant results for the research of credit risk, especially if modeled by neural networks.
Resumo:
O relacionamento de longo prazo é atualmente o elemento-chave para o sucesso das organizações. Com um mercado tão competitivo, as empresas estão desenvolvendo estratégias que melhor possam satisfazer e criar valor para seus clientes. As empresas precisam definir muito bem as suas estratégias com foco na percepção de seus clientes e do mercado. Porém a criação de valor não advém apenas da qualidade de um produto, da tecnologia e da infraestrutura. Ela também tem base em valores intrínsecos como, por exemplo, as competências. Sendo assim, as empresas precisam investir nos profissionais de linha de frente para que eles desenvolvam competências e atendam às necessidades e desejos dos clientes. Este trabalho tem o intuito de demonstrar se as competências coletivas, desenvolvidas a partir da interação social de um grupo podem trazer algum(s) benefício(s) ou não para o atendimento ao cliente em termos de satisfação e criação de valor, promovendo o marketing de relacionamento. Em seu desenvolvimento, foram utilizadas como base as teorias de competência, competências coletivas, gestão do conhecimento, satisfação e criação de valor para o cliente e marketing de relacionamento. Porém, não foi possível encontrar na literatura qualquer relação entre os temas competências coletivas e marketing de relacionamento. Neste contexto, o presente trabalho teve como objetivo geral analisar como o desenvolvimento das competências coletivas de uma equipe de vendas pode influenciar a satisfação do cliente. Especificamente buscou-se a) levantar quais os principais fatores ligados à equipe de vendas que geram satisfação nos clientes; b) analisar como as competências coletivas da equipe de vendas influenciam a satisfação do cliente; c) identificar como se formam competências coletivas em uma equipe de vendas. A partir destes objetivos, o procedimento metodológico de abordagem qualitativa foi orientado pelo método de estudo de caso, com procedimentos de análise de dados de entrevistas, observação direta e levantamento de registros. Foram entrevistadas duas equipes de vendas de uma empresa multinacional no segmento de serviços para análise e proteção de crédito, envolvendo o gerente, três vendedores e um cliente de cada equipe, atendidos por estes vendedores. As observações foram realizadas em duas reuniões de vendas envolvendo vendedores e clientes, e os registros analisados referem-se a metas e número de clientes atendidos no mês. Os resultados evidenciam que as competências coletivas podem influenciar na satisfação do cliente, embora estes só percebam as competências individuais e organizacionais. Mas ficou evidente, por parte de vendedores e gerentes de equipe, que as competências coletivas, além de promover a satisfação do cliente, auxiliam no desenvolvimento e na formação de competências individuais das pessoas na área comercial.
Resumo:
This study explores factors related to the prompt difficulty in Automated Essay Scoring. The sample was composed of 6,924 students. For each student, there were 1-4 essays, across 20 different writing prompts, for a total of 20,243 essays. E-rater® v.2 essay scoring engine developed by the Educational Testing Service was used to score the essays. The scoring engine employs a statistical model that incorporates 10 predictors associated with writing characteristics of which 8 were used. The Rasch partial credit analysis was applied to the scores to determine the difficulty levels of prompts. In addition, the scores were used as outcomes in the series of hierarchical linear models (HLM) in which students and prompts constituted the cross-classification levels. This methodology was used to explore the partitioning of the essay score variance.^ The results indicated significant differences in prompt difficulty levels due to genre. Descriptive prompts, as a group, were found to be more difficult than the persuasive prompts. In addition, the essay score variance was partitioned between students and prompts. The amount of the essay score variance that lies between prompts was found to be relatively small (4 to 7 percent). When the essay-level, student-level-and prompt-level predictors were included in the model, it was able to explain almost all variance that lies between prompts. Since in most high-stakes writing assessments only 1-2 prompts per students are used, the essay score variance that lies between prompts represents an undesirable or "noise" variation. Identifying factors associated with this "noise" variance may prove to be important for prompt writing and for constructing Automated Essay Scoring mechanisms for weighting prompt difficulty when assigning essay score.^
Resumo:
The paper studies the relationship between four differently rated bank’s financial profile and their standalone credit rating issued by Moody’s. The comparative analysis shows an example that despite their pricing power and geographical coverage, larger banks do not necessarily have better credit ratings. Instead, business model and risk appetite seem to be the defining factors of banks’ vulnerability to shocks, such as the Spanish real estate crisis. The risk-return relationship is also identified in the banks’ fundamentals meaning that while expansionary strategy in riskier asset classes enhances margins, it also potentially distorts the credit risk profile.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.