999 resultados para crash modeling
Resumo:
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
The Highway Safety Manual is the national safety manual that provides quantitative methods for analyzing highway safety. The HSM presents crash modification factors related to work zone characteristics such as work zone duration and length. These crash modification factors were based on high-impact work zones in California. Therefore there was a need to use work zone and safety data from the Midwest to calibrate these crash modification factors for use in the Midwest. Almost 11,000 Missouri freeway work zones were analyzed to derive a representative and stratified sample of 162 work zones. The 162 work zones was more than four times the number of work zones used in the HSM. This dataset was used for modeling and testing crash modification factors applicable to the Midwest. The dataset contained work zones ranging from 0.76 mile to 9.24 miles and with durations from 16 days to 590 days. A combined fatal/injury/non-injury model produced a R2 fit of 0.9079 and a prediction slope of 0.963. The resulting crash modification factors of 1.01 for duration and 0.58 for length were smaller than the values in the HSM. Two practical application examples illustrate the use of the crash modification factors for comparing alternate work zone setups.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.
Resumo:
Annual Average Daily Traffic (AADT) is a critical input to many transportation analyses. By definition, AADT is the average 24-hour volume at a highway location over a full year. Traditionally, AADT is estimated using a mix of permanent and temporary traffic counts. Because field collection of traffic counts is expensive, it is usually done for only the major roads, thus leaving most of the local roads without any AADT information. However, AADTs are needed for local roads for many applications. For example, AADTs are used by state Departments of Transportation (DOTs) to calculate the crash rates of all local roads in order to identify the top five percent of hazardous locations for annual reporting to the U.S. DOT. ^ This dissertation develops a new method for estimating AADTs for local roads using travel demand modeling. A major component of the new method involves a parcel-level trip generation model that estimates the trips generated by each parcel. The model uses the tax parcel data together with the trip generation rates and equations provided by the ITE Trip Generation Report. The generated trips are then distributed to existing traffic count sites using a parcel-level trip distribution gravity model. The all-or-nothing assignment method is then used to assign the trips onto the roadway network to estimate the final AADTs. The entire process was implemented in the Cube demand modeling system with extensive spatial data processing using ArcGIS. ^ To evaluate the performance of the new method, data from several study areas in Broward County in Florida were used. The estimated AADTs were compared with those from two existing methods using actual traffic counts as the ground truths. The results show that the new method performs better than both existing methods. One limitation with the new method is that it relies on Cube which limits the number of zones to 32,000. Accordingly, a study area exceeding this limit must be partitioned into smaller areas. Because AADT estimates for roads near the boundary areas were found to be less accurate, further research could examine the best way to partition a study area to minimize the impact.^