985 resultados para cracked rice
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os objetivos deste trabalho foram determinar a absorção aparente, estimar as perdas endógenas fecais e a absorção real do Mg e determinar a ingestão ad libitum da água de beber e a concentração de Mg no soro sangüíneo de caprinos da raças Anglonubiana (AN) e Saanen (SN). Foram usados doze caprinos, seis de cada raça, com 19,8 kg PV médio. Dietas semipurificadas (baixo teor de Mg) à base de quirera de arroz, glúten de milho e celulose foram suplementadas com MgO, para se obterem os níveis de 0,05 (sem supplementação) 0,20 e 0,35% Mg (%MS). Os níveis de Mg influenciaram os coeficientes de absorção aparente de Mg e Ca, com valores médios de 57,8; 73,9; e 73,2% para Mg e 55,7; 39,6; e 49,5% para Ca, para dietas com níveis 0,05; 0,20; e 0,35% de Mg, respectivamente. Entretanto, para os coeficientes de absorção aparente de P, Na e K, não houve efeito de níveis de Mg na dieta. Os resultados de absorção real de Mg apresentaram interação de níveis de Mg e raças. A média para raça NA, no nível 0,05% Mg, foi de 61,0% e para os níveis 0,20 e 0,35% Mg, 77,2 e 73,2%, respectivamente. Entretanto, para a raça SN, as médias foram 73,3; 75,5; e 76,0%, para os mesmos níveis, sem diferenças. A digestibilidade de matéria seca, proteína bruta e extrato não-nitrogenado diminuiu com os níveis crescentes de Mg nas dietas. As excreções fecais (7,0; 20,8; e 34,4 mg/kg PV0,75.d) e urinárias (3,9; 30,8; e 44,6 mg/kg PV0,75.d) de Mg elevaram-se com o aumento dos níveis crescentes de Mg nas dietas. Houve, também, influência dos níveis de Mg dietético sobre as concentrações de Mg do soro sangüíneo (1,74; 2,23; e 2,80 mg/dL para níveis de 0,05; 0,20; e 0,35% de Mg, respectivamente).
Resumo:
An experiment employing three hundred and twenty 81-week-old Lohmann LSL commercial-breed hens was conducted to compare alternative induced-molting methods with the conventional method (fasting). Induced molting lasted 28 days at most, production and quality being monitored for four periods of 28 days thereafter. A completely randomized experimental design with five treatments, eight replicates of eight birds each per plot was adopted. The following experimental treatments were applied until a loss of 26% of body weight was reached: T1 - fasting, T2 - wheat bran ad libitum, T3 - rice bran ad libitum, T4 - cracked rice ad libitum, T5 - ground alfalfa ad libitum. Birds were then fed production diet ad libitum, except for those on treatment T1 (fasting) which received 30, 60 and 100 g/bird/day and then feed ad libitum. During induced molting the birds were exposed to a natural photoperiod and at day 28 that period was increased by 30 minutes/week until reaching 16 hours of light/day. The characteristics evaluated during induced molting were: feed intake, body weight changes and laying percentage. In the post-molt period, performance (feed intake, laying percentage, egg weight, egg mass, feed conversion ratio per dozen and per egg mass and percentage of broken eggs) and egg quality (specific gravity, eggshell breaking strength, percentages of eggshell, yolk, and albumen, eggshell thickness, yolk color and Haugh unit) were evaluated. Every 28 days one egg was collected from each repetition for three consecutive days for quality assessment. The use of rice bran and wheat bran is viable as molting inducers since the birds given those treatments display performance and egg quality similar to those fasted during the induced molting and also because these ingredients promote easier handling, eliminates the need for grinding and feed-mixing equipment and, being less aggressive, provide greater bird welfare.
Resumo:
The unstable stacking criteria for an ideal copper crystal under homogeneous shearing and for a cracked copper crystal under pure mode II loading are analysed. For the ideal crystal under homogeneous shearing, the unstable stacking energy gamma(us) defined by Rice in 1992 results from shear with no relaxation in the direction normal to the slip plane. For the relaxed shear configuration, the critical condition for unstable stacking does not correspond to the relative displacement Delta = b(p)/2, where b(p) is the Burgers vector magnitude of the Shockley partial dislocation, but to the maximum shear stress. Based on this result, the unstable stacking energy Gamma(us) is defined for the relaxed lattice. For the cracked crystal under pure mode II loading, the dislocation configuration corresponding to Delta = b(p)/2 is a stable state and no instability occurs during the process of dislocation nucleation. The instability takes place at approximately Delta = 3b(p)/4. An unstable stacking energy Pi(us) is defined which corresponds to the unstable stacking state at which the dislocation emission takes place. A molecular dynamics method is applied to study this in an atomistic model and the results verify the analysis above.
Resumo:
Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index value
Resumo:
Analysis by enzyme-linked immunosorbent assay showed that Rice tungro bacilliform virus (RTBV) accumulated in a cyclic pattern from early to late stages of infection in tungro-susceptible variety, Taichung Native 1 (TN1), and resistant variety, Balimau Putih, singly infected with RTBV or co-infected with RTBV+Rice tungro spherical virus (RTSV). These changes in virus accumulation resulted in differences in RTBV levels and incidence of infection. The virus levels were expressed relative to those of the susceptible variety and the incidence of infection was assessed at different weeks after inoculation. At a particular time point, RTBV levels in TN1 or Balimau Putih singly infected with RTBV were not significantly different from the virus level in plants co-infected with RTBV+RTSV. The relative RTBV levels in Balimau Putih either singly infected with RTBV or co-infected with RTBV+RTSV were significantly lower than those in TN1. The incidence of RTBV infection varied at different times in Balimau Putih but not in TN1, and to determine the actual infection, the number of plants that became infected at least once anytime during the 4wk observation period was considered. Considering the changes in RTBV accumulation, new parameters for analyzing RTBV resistance were established. Based on these parameters, Balimau Putih was characterized having resistance to virus accumulation although the actual incidence of infection was >75%.
Resumo:
Many farmers in South and Southeast Asia describe rice tungro disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (121). As the most important of the 14 rice viral diseases, tungro was first recognized as a leafhopper-transmitted virus disease in 1963 (88). However, tungro, which means “degenerated growth” in a Filipino dialect, has a much longer history. It is almost certain that tungro was responsible for a disease outbreak that occurred in 1859 in Indonesia, which was referred to at the time as mentek (83). In the past, a variety of names has been given to tungro, including accep na pula in the Philippines, penyakit merah in Malaysia, and yelloworange leaf in Thailand (83).
Resumo:
Many well-known specialists have contributed to this book which presents for the first time an in-depth look at the viruses, their satellites and the retrotransposons infecting (or occuring in) one plant family: the Poaceae (Gramineae). After molecular and biological descriptions of the viruses to species level, virus diseases are presented by crop: barley, maize, rice, rye, sorghum, sugarcane, triticales, wheats, forage, ornamental and lawn. A detailed index of the viruses and taxonomic lists will help readers in the search for information.
Resumo:
Rice tungro bacilliform virus (RTBV) is one of the two viruses that cause tungro disease. Four RTBV strains maintained in the greenhouse for 4 years, G1, G2, Ic, and L, were differentiated by restriction fragment length polymorphism (RFLP) analysis of the native viral DNA. Although strains G1 and Ic had identical restriction patterns when cleaved with Pst1, BamHI, EcoRI, and EcoRV, they can be differentiated from strains G2 and L by EcoRI and EcoRV digestion. These same endonucleases also differentiate strain G2 from strain L. When total DNA extracts from infected plants were used instead of viral DNA, and digested with EcoRV, identical restriction patterns for each strain (G2 and L) were obtained from roots, leaves, and leaf sheaths of infected plants. The restriction patterns were consistent from plant to plant, in different varieties, and at different times after inoculation. This technique can be used to differentiate RTBV strains and determine the variability of a large number of field samples.
Resumo:
RTSV is one of two viruses that cause tungro disease. RTSV is independently transmitted, whereas the other virus, rice tungro bacilliform virus (RTBV), is dependent on RTSV for its transmission by the green leafhopper (GLH), Nephotettix virescens. The occurrence and spread of tungro disease therefore depend on the presence of RTSV in the field. Resistance to RTSV infection would slow down the spread of the disease.
Resumo:
Differentiation of rice tungro spherical virus variants by RTPCR and RFLP tungro bacilliform virus (RTBV), the other causal agent, which causes the symptoms. RTSV is a single-stranded RNA virus of 12,180 nucleotides (Hull 1996).