159 resultados para covariant
Resumo:
We derive a new implementation of linear covariant gauges on the lattice, based on a minimizing functional that can be interpreted as the Hamiltonian of a spin-glass model in a random external magnetic field. We show that our method solves most problems encountered in earlier implementations, mostly related to the no-go condition formulated by Giusti [Nucl. Phys. B498, 331 (1997)]. We carry out tests in the SU(2) case in four space-time dimensions. We also present preliminary results for the transverse gluon propagator at different values of the gauge parameter xi.
Resumo:
The aim of this thesis is to present a solution to the quantum phase problem of the single-mode optical field. The solution is based on the use of phase shift covariant normalized positive operator measures. These measures describe realistic direct coherent state phase measurements such as the phase measurement schemes based on eight-port homodyne detection or heterodyne detection. The structure of covariant operator measures and, more generally, covariant sesquilinear form measures is analyzed in this work. Four different characterizations for phase shift covariant normalized positive operator measures are presented. The canonical covariant operator measure is definded and its properties are studied. Finally, some other suggested phase theories are introduced to investigate their connections to the covariant sesquilinear form measures.
Resumo:
The problem of freeze-out (FO) in relativistic heavy-ion reactions is addressed. We develop and analyze an idealized one-dimensional model of FO in a finite layer, based on the covariant FO probability. The resulting post FO phase-space distributions are discussed for different FO probabilities and layer thicknesses.
Resumo:
We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.
Resumo:
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
Resumo:
Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time.
Resumo:
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
Resumo:
A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.
Resumo:
The infinitesimal transformations that leave invariant a two-covariant symmetric tensor are studied. The interest of these symmetry transformations lays in the fact that this class of tensors includes the energy-momentum and Ricci tensors. We find that in most cases the class of infinitesimal generators of these transformations is a finite dimensional Lie algebra, but in some cases exhibiting a higher degree of degeneracy, this class is infinite dimensional and may fail to be a Lie algebra. As an application, we study the Ricci collineations of a type B warped spacetime.
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We construct non-relativistic Lagrangian field models by enforcing Galilean covariance with a (4, 1) Minkowski manifold followed by a projection onto the (3, 1) Newtonian spacetime. We discuss scalar, Fermi and gauge fields, as well as interactions between these fields, preparing the stage for their quantization. We show that the Galilean covariant formalism provides an elegant construction of the Lagrangians which describe the electric and magnetic limits of Galilean electromagnetism. Similarly we obtain non-relativistic limits for the Proca field. Then we study Dirac Lagrangians and retrieve the Levy-Leblond wave equations when the Fermi field interacts with an Abelian gauge field.
Resumo:
In this article, the multiloop amplitude prescription using the super-Poincare invariant pure spinor formalism for the superstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the boundary of moduli space can be ignored. Massless N-point multiloop amplitudes vanish for N < 4, which implies (with two mild assumptions) the perturbative finiteness of superstring theory. Also, R-4 terms receive no multiloop contributions in agreement with the Type IIB S-duality conjecture of Green and Gutperle. (c) 2005 Published by Elsevier SAS on behalf of Academie des sciences.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincare invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.