915 resultados para convergence of the networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: In the last few decades, Central American countries are making a significant effort in order to modernize their governments' legislation both on financial management and systems of financial information. In this sense, these countries aim to enhance the quality of public financial information in order to improve decision-making processes, decrease the level of corruption, and keep citizens informed. In this context, the purpose of this paper is twofold. Firstly, to assess the degree of similarity of the financial information that is being developed by Central American governments with regard to the recommendations set up by Ipsas, and secondly, to analyse the efforts and the strategies that those countries are carrying out in the process of implementing those standards. To determine the differences in the information containing the annual financial statements issued by national public authorities and the recommendations set up by Ipsas we conducted a deductive content analysis. In view of the results we can say that the quality of annual financial statements presented by the countries in Central America, in comparison to the recommendations by the Ipsas concerning Ifac information, is not enough. Hence, in order to operate significant changes, it is still necessary to create new strategies for the implementation of the Ipsas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The no response test is a new scheme in inverse problems for partial differential equations which was recently proposed in [D. R. Luke and R. Potthast, SIAM J. Appl. Math., 63 (2003), pp. 1292–1312] in the framework of inverse acoustic scattering problems. The main idea of the scheme is to construct special probing waves which are small on some test domain. Then the response for these waves is constructed. If the response is small, the unknown object is assumed to be a subset of the test domain. The response is constructed from one, several, or many particular solutions of the problem under consideration. In this paper, we investigate the convergence of the no response test for the reconstruction information about inclusions D from the Cauchy values of solutions to the Helmholtz equation on an outer surface $\partial\Omega$ with $\overline{D} \subset \Omega$. We show that the one‐wave no response test provides a criterion to test the analytic extensibility of a field. In particular, we investigate the construction of approximations for the set of singular points $N(u)$ of the total fields u from one given pair of Cauchy data. Thus, the no response test solves a particular version of the classical Cauchy problem. Also, if an infinite number of fields is given, we prove that a multifield version of the no response test reconstructs the unknown inclusion D. This is the first convergence analysis which could be achieved for the no response test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.