985 resultados para cond-mat.stat-mech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgement One of us (AP) wishes to acknowledge S. Flach for enlightening discussions about the relationship between the DNLS equation and the rotor model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

16 pages, 22 figures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-Markovian process is one that retains `memory' of its past. A systematic understanding of these processes is necessary to fully describe and harness a vast range of complex phenomena; however, no such general characterisation currently exists. This long-standing problem has hindered advances in understanding physical, chemical and biological processes, where often dubious theoretical assumptions are made to render a dynamical description tractable. Moreover, the methods currently available to treat non-Markovian quantum dynamics are plagued with unphysical results, like non-positive dynamics. Here we develop an operational framework to characterise arbitrary non-Markovian quantum processes. We demonstrate the universality of our framework and how the characterisation can be rendered efficient, before formulating a necessary and sufficient condition for quantum Markov processes. Finally, we stress how our framework enables the actual systematic analysis of non-Markovian processes, the understanding of their typicality, and the development of new master equations for the effective description of memory-bearing open-system evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies a new exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nonequilibrium dynamics of the linear to zigzag structural phase transition exhibited by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This results in the formation of zigzag domains oriented along different transverse planes. The twists between different domains can be stabilized by the topology of the trap and under laser cooling the system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics simulations are used to obtain a large sample of possible trajectories for different quench rates. The scaling of the average winding number with different quench rates is compared to the prediction of the Kibble-Zurek theory, and a good quantitative agreement is found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between two disks immersed in a 2D nernatic is investigated i) analytically using the tenser order parameter formalism for the nematic configuration around isolated disks and ii) numerically using finite-element methods with adaptive meshing to minimize the corresponding Landau-de Gennes free energy. For strong homeotropic anchoring, each disk generates a pair of defects with one-half topological charge responsible for the 2D quadrupolar interaction between the disks at large distances. At short distance, the position of the defects may change, leading to unexpected complex interactions with the quadrupolar repulsive interactions becoming attractive. This short-range attraction in all directions is still anisotropic. As the distance between the disks decreases, their preferred relative orientation with respect to the far-field nernatic director changes from oblique to perpendicular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest the possibility of observing and studying bright vortex solitons in attractive Bose-Einstein condensates in three dimensions with a radial trap. Such systems lie on the verge of critical stability and we discuss the conditions of their stability. We study the interaction between two such solitons. Unlike the text-book solitons in one dimension, the interaction between two radially trapped and axially free three-dimensional solitons is inelastic in nature and involves exchange of particles and deformation in shape. The interaction remains repulsive for all phase δ between them except for δ ≈ 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-body recombination coefficient of an ultracold atomic system, together with the corresponding two-body scattering length a, allow us to predict the energy E 3 of the shallow trimer bound state, using a universal scaling function. The production of dimers in trapped Bose-Einstein condensates, from three-body recombination processes, in the regime of short magnetic pulses near a Feshbach resonance, is also studied in line with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contains several applications of the mode-coupling theory (MCT) and is separated into three parts. In the first part we investigate the liquid-glass transition of hard spheres for dimensions d→∞ analytically and numerically up to d=800 in the framework of MCT. We find that the critical packing fraction ϕc(d) scales as d²2^(-d), which is larger than the Kauzmann packing fraction ϕK(d) found by a small-cage expansion by Parisi and Zamponi [J. Stat. Mech.: Theory Exp. 2006, P03017 (2006)]. The scaling of the critical packing fraction is different from the relation ϕc(d)∼d2^(-d) found earlier by Kirkpatrick and Wolynes [Phys. Rev. A 35, 3072 (1987)]. This is due to the fact that the k dependence of the critical collective and self nonergodicity parameters fc(k;d) and fcs(k;d) was assumed to be Gaussian in the previous theories. We show that in MCT this is not the case. Instead fc(k;d) and fcs(k;d), which become identical in the limit d→∞, converge to a non-Gaussian master function on the scale k∼d^(3/2). We find that the numerically determined value for the exponent parameter λ and therefore also the critical exponents a and b depend on the dimension d, even at the largest evaluated dimension d=800. In the second part we compare the results of a molecular-dynamics simulation of liquid Lennard-Jones argon far away from the glass transition [D. Levesque, L. Verlet, and J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)] with MCT. We show that the agreement between theory and computer simulation can be improved by taking binary collisions into account [L. Sjögren, Phys. Rev. A 22, 2866 (1980)]. We find that an empiric prefactor of the memory function of the original MCT equations leads to similar results. In the third part we derive the equations for a mode-coupling theory for the spherical components of the stress tensor. Unfortunately it turns out that they are too complex to be solved numerically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

11 pages Acknowledgments MCM thanks Xingbo Yang and Lisa Manning for their contribution to some aspects of the work reviewed here and for fruitful discussions. MCM was supported by NSF-DMR-305184. MCM and AP acknowledge support by the NSF IGERT program through award NSF-DGE-1068780. MCM, AP and DY were additionally supported by the Soft Matter Program at Syracuse University. AP acknowledges use of the Syracuse University HTC Campus Grid which is supported by NSF award ACI-1341006. YF was supported by NSF grant DMR-1149266 and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-1420382.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

11 pages Acknowledgments MCM thanks Xingbo Yang and Lisa Manning for their contribution to some aspects of the work reviewed here and for fruitful discussions. MCM was supported by NSF-DMR-305184. MCM and AP acknowledge support by the NSF IGERT program through award NSF-DGE-1068780. MCM, AP and DY were additionally supported by the Soft Matter Program at Syracuse University. AP acknowledges use of the Syracuse University HTC Campus Grid which is supported by NSF award ACI-1341006. YF was supported by NSF grant DMR-1149266 and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-1420382.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

7 pages, 6 figures