897 resultados para conceptual understanding
Resumo:
BACKGROUND: Emergency departments (EDs) are critical to the management of acute illness and injury, and the provision of health system access. However, EDs have become increasingly congested due to increased demand, increased complexity of care and blocked access to ongoing care (access block). Congestion has clinical and organisational implications. This paper aims to describe the factors that appear to infl uence demand for ED services, and their interrelationships as the basis for further research into the role of private hospital EDs. DATA SOURCES: Multiple databases (PubMed, ProQuest, Academic Search Elite and Science Direct) and relevant journals were searched using terms related to EDs and emergency health needs. Literature pertaining to emergency department utilisation worldwide was identified, and articles selected for further examination on the basis of their relevance and significance to ED demand. RESULTS: Factors influencing ED demand can be categorized into those describing the health needs of the patients, those predisposing a patient to seeking help, and those relating to policy factors such as provision of services and insurance status. This paper describes the factors influencing ED presentations, and proposes a novel conceptual map of their interrelationship. CONCLUSION: This review has explored the factors contributing to the growing demand for ED care, the influence these factors have on ED demand, and their interrelationships depicted in the conceptual model.
Resumo:
Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective
Resumo:
Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering concepts exist due to a lack of mental frameworks, or schemas, for these types of concepts or conceptual areas. This study incorporated an open textual response component in a multiple-choice concept inventory test to capture written explanations of students' selections. The study's goal was to identify, through text analysis of student responses, the types and categorizations of concepts in these explanations that had not been uncovered by the distractor selections. The analysis of the textual explanations of a subset of the discrete-time signals and systems concept inventory questions revealed that students have difficulty conceptually explaining several dimensions of signal processing. This contributed to their inability to provide a clear explanation of the underlying concepts, such as mathematical concepts. The methods used in this study evaluate students' understanding of signals and systems concepts through their ability to express understanding in written text. This may present a bias for students with strong written communication skills. This study presents a framework for extracting and identifying the types of concepts students use to express their reasoning when answering conceptual questions.
Resumo:
This action research study of my 8th grade classroom investigated the use of mathematical communication, through oral homework presentations and written journals entries, and its impact on conceptual understanding of mathematics. This change in expectation and its impact on students’ attitudes towards mathematics was also investigated. Challenging my students to communicate mathematics both orally and in writing deepened the students’ understanding of the mathematics. Levels of understanding deepened when a variety of instructional methods were presented and discussed where students could comprehend the ideas that best suited their learning styles. Increased understanding occurred through probing questions causing students to reflect on their learning and reevaluate their reasoning. This transpired when students were expected to write more than one draft to math journals. By making students aware of their understanding through communicating orally and in writing, students realized that true understanding did not come from mere homework completion, but from evaluating and assessing their own and other’s ideas and reasoning. I discovered that when students were challenged to communicate their reasoning both orally and in writing, students enjoyed math more and thought math was more fun. As a result of this research, I will continue to require students to communicate their thinking and reasoning both orally and in writing.
Resumo:
The role that student friendship groups play in learning was investigated here. Employing a critical realist design, two focus groups on undergraduates were conducted to explore their experience of studying. Data from the "case-by-case" analysis suggested student-to-student friendships produced social contexts which facilitated conceptual understanding through discussion, explanation, and application to "real life" contemporary issues. However, the students did not conceive this as a learning experience or suggest the function of their friendships involved learning. These data therefore challenge the perspective that student groups in higher education are formed and regulated for the primary function of learning. Given these findings, further research is needed to assess the role student friendships play in developing disciplinary conceptual understanding.
Resumo:
This paper is part of the Project “Adaptive thinking and flexible computation: Critical issues”. In this paper we discuss different perspectives of flexibility and adaptive thinking in literature. We also discuss the idea of proceptual thinking and how this idea is important in our perspective of adaptive thinking. The paper analyses a situation developed with a first grade classroom and its teacher named the day number. It is a daily activity at the beginning of the school day. It consists on to look for the date number and to think about different ways of writing it using the four arithmetic operations. The analyzed activity was developed on March 19, so the challenge was to write 19 in several ways. The data show the pupils’ enthusiasm and their efforts to find different ways of writing the number. Some used large numbers and division, which they were just starting to learn. The pupils presented symbolic expressions of 19, decomposing and recomposing it in a flexible manner.
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
This study investigates the influence of the built environment upon residents' sense of familiarity, concept of self and thus, their facilitation of place through the theory of "The Bondage of Imposed Visual Discourse". Simone de Beauvoir's theory "The Bondage of Feminine Elegance" provides the conceptual understanding of the visual discourse between the physicality of clothing and the wearer's personal identity. This fashion theory is transposed to explore the influence of the built environment's physicality upon aged care residents' personal identity. This paper presents findings from a study of professionals' opinions in reference to the built environment of permanent residential aged care for the 'oldest-old' of Australia. The researcher conducted qualitative interviews with four participants: an architect, occupational therapist, nursing home facility manager and an aged care lobbyist in the South-East Queensland. This study is structured towards proposing "place-focused" qualitative design principles to encourage residents' sense of place through the built environment. These proposed principles are addressed with reference to existing Standards and Principles outlined by the Australian Government.
Resumo:
Objective Despite ‘hospital resilience’ gaining prominence in recent years, it remains poorly defined. This article aims to define hospital resilience, build a preliminary conceptual framework and highlight possible approaches to measurement. Methods Searches were conducted of the commonly used health databases to identify relevant literature and reports. Search terms included ‘resilience and framework or model’ or ‘evaluation or assess or measure and hospital and disaster or emergency or mass casualty and resilience or capacity or preparedness or response or safety’. Articles were retrieved that focussed on disaster resilience frameworks and the evaluation of various hospital capacities. Result A total of 1480 potentially eligible publications were retrieved initially but the final analysis was conducted on 47 articles, which appeared to contribute to the study objectives. Four disaster resilience frameworks and 11 evaluation instruments of hospital disaster capacity were included. Discussion and conclusion Hospital resilience is a comprehensive concept derived from existing disaster resilience frameworks. It has four key domains: hospital safety; disaster preparedness and resources; continuity of essential medical services; recovery and adaptation. These domains were categorised according to four criteria, namely, robustness, redundancy, resourcefulness and rapidity. A conceptual understanding of hospital resilience is essential for an intellectual basis for an integrated approach to system development. This article (1) defines hospital resilience; (2) constructs conceptual framework (including key domains); (3) proposes comprehensive measures for possible inclusion in an evaluation instrument, and; (4) develops a matrix of critical issues to enhance hospital resilience to cope with future disasters.
Resumo:
viii
Executive Summary
The Pathways Project field studies were targeted at improving the understanding of contaminant transport along different hydrological pathways in Irish catchments, including their associated impacts on water quality and river ecology. The contaminants of interest were phosphorus, nitrogen and sediment. The working Pathways conceptual model included overland flow, interflow, shallow groundwater flow, and deep groundwater flow. This research informed the development of a set of Catchment Management Support Tools (CMSTs) comprising an Exploratory Tool, Catchment Characterization Tool (CCT) and Catchment Modelling Tool (CMT) as outlined in Pathways Project Final Reports Volumes 3 and 4.
In order to inform the CMST, four suitable study catchments were selected following an extensive selection process, namely the Mattock catchment, Co. Louth/Meath; Gortinlieve catchment, Co. Donegal; Nuenna catchment, Co. Kilkenny and the Glen Burn catchment, Co. Down. The Nuenna catchment is well drained as it is underlain by a regionally important karstified limestone aquifer with permeable limestone tills and gravels, while the other three catchments are underlain by poorly productive aquifers and low permeability clayey tills, and are poorly drained.
All catchments were instrumented, and groundwater, surface and near-surface water and aquatic ecology were monitored for a period of two years. Intensive water quality sampling during rainfall events was used to investigate the pathways delivering nutrients. The proportion of flow along each pathway was determined using chemical and physical hydrograph separation techniques, supported by numerical modelling.
The outcome of the field studies broadly supported the use of the initial four-pathway conceptual model used in the Pathways CMT (time-variant model). The artificial drainage network was found to be a significant contributing pathway in the poorly drained catchments, at low flows and during peak flows in wet antecedent conditions. The transition zone (TZ), i.e. the broken up weathered zone at the top of the bedrock, was also found to be an important pathway. It was observed to operate in two contrasting hydrogeological scenarios: in groundwater discharge zones the TZ can be regarded as being part of the shallow groundwater pathway, whereas in groundwater recharge zones it behaves more like interflow.
In the catchments overlying poorly productive aquifers, only a few fractures or fracture zones were found to be hydraulically active and the TZ, where present, was the main groundwater pathway. In the karstified Nuenna catchment, the springs, which are linked to conduits as well as to a diffuse fracture network, delivered the majority of the flow. These findings confirm the two-component groundwater contribution from bedrock but suggest that the size and nature of the hydraulically active fractures and the nature of the TZ are the dominant factors at the scale of a stream flow event.
Diffuse sources of nitrate were found to be typically delivered via the subsurface pathways, especially in the TZ and land drains in the poorly productive aquifer catchments, and via the bedrock groundwater in the Nuenna. Phosphorus was primarily transported via overland flow in both particulate and soluble forms. Where preferential flow paths existed in the soil and subsoil, soluble P, and to a lesser extent particulate P, were also transported via the TZ and in drains and ditches. Arable land was found to be the most important land use for
ix
the delivery of sediment, although channel bank and in-stream sources were the most significant in the Glen Burn catchment. Overland flow was found to be the predominant transport sediment pathway in the poorly productive catchments. These findings informed the development of the transport and attenuation equations used in the CCT and CMT. From an assessment of the relationship between physico-chemical and biological conditions, it is suggested that in the Nuenna, Glen Burn and Gortinlieve catchments, a relationship may exist between biological water quality and nitrogen concentrations, as well as with P. In the Nuenna, there was also a relationship between macroinvertebrate status and alkalinity.
Further research is recommended on the transport and delivery of phosphorus in groundwater, the transport and attenuation dynamics in the TZ in different hydrogeological settings and the relationship between macroinvertebrates and co-limiting factors. High resolution temporal and spatial sampling was found to be important for constraining the conceptual understanding of nutrient and sediment dynamics which should also be considered in future studies.
Resumo:
Misconceptions about heat and temperature have been seen across all educational levels, even in undergraduate engineering courses. One way these misconceptions can be remediated is through instructional methods, such as inquiry-based activities. Performance on assessments in sciences and engineering has been found to vary when gender is taken into consideration. The purpose of the current study was to investigate the effects of participant gender, professor gender, and level of inquiry-based activities on the conceptual understanding of 247 undergraduate engineering students in thermodynamics. A pre-test post-test design was used. Conceptual understanding of thermodynamics was measured by students’ scores on the Concept Inventory for Engineering Thermodynamics (CIET; Vigeant, Prince & Nottis, 2011). Inquiry-based activities were developed by the researchers and given to professors who determined if they would do all, some, or none of them as they taught. Significant differences were found among participants of different gender, different gender of the professor instructing the course, and level of inquiry-based activity. The participants who were exposed to all of the activities provided didsignificantly better on the post-test than those who were only exposed to some or none of the activities. The results from this current study indicated that differences in gender, professorgender, and level of inquiry-based activity has an effect on undergraduate engineering students’ conceptual understanding of thermodynamics. Future research should investigate more factorsthat contribute to lower representation of women in the engineering field.