913 resultados para computer technology enhanced pedagogy
Resumo:
While the influence of computer technology has been widely studied in a variety of contexts, the drawing teaching studio is a particularly interesting context because of the juxtaposition of traditional medium and computer technology. For this study, 5 Canadian postsecondary teachers engaged in a 2-round Delphi interview process to discuss their responses to computer technology on their drawing pedagogy. Data sources included transcribed interviews. Findings indicated that artist teachers are both cautious to embrace and curious to explore appropriate use of computer technology on their drawing pedagogy. Artist teachers are both critical and optimistic about the influence of computer technology.
Resumo:
Strategies of scientific, question-driven inquiry are stated to be important cultural practices that should be educated in schools and universities. The present study focuses on investigating multiple efforts to implement a model of Progressive Inquiry and related Web-based tools in primary, secondary and university level education, to develop guidelines for educators in promoting students collaborative inquiry practices with technology. The research consists of four studies. In Study I, the aims were to investigate how a human tutor contributed to the university students collaborative inquiry process through virtual forums, and how the influence of the tutoring activities is demonstrated in the students inquiry discourse. Study II examined an effort to implement technology-enhanced progressive inquiry as a distance working project in a middle school context. Study III examined multiple teachers' methods of organizing progressive inquiry projects in primary and secondary classrooms through a generic analysis framework. In Study IV, a design-based research effort consisting of four consecutive university courses, applying progressive inquiry pedagogy, was retrospectively re-analyzed in order to develop the generic design framework. The results indicate that appropriate teacher support for students collaborative inquiry efforts appears to include interplay between spontaneity and structure. Careful consideration should be given to content mastery, critical working strategies or essential knowledge practices that the inquiry approach is intended to promote. In particular, those elements in students activities should be structured and directed, which are central to the aim of Progressive Inquiry, but which the students do not recognize or demonstrate spontaneously, and which are usually not taken into account in existing pedagogical methods or educational conventions. Such elements are, e.g., productive co-construction activities; sustained engagement in improving produced ideas and explanations; critical reflection of the adopted inquiry practices, and sophisticated use of modern technology for knowledge work. Concerning the scaling-up of inquiry pedagogy, it was concluded that one individual teacher can also apply the principles of Progressive Inquiry in his or her own teaching in many innovative ways, even under various institutional constraints. The developed Pedagogical Infrastructure Framework enabled recognizing and examining some central features and their interplay in the designs of examined inquiry units. The framework may help to recognize and critically evaluate the invisible learning-cultural conventions in various educational settings and can mediate discussions about how to overcome or change them.
Resumo:
Tese de doutoramento (co-tutela), Psicologia (Psicologia da Educação), Faculdade de Psicologia da Universidade de Lisboa, Faculdade de Psicologia e de Ciências da Educação da Universidade de Coimbra, Technial University of Darmstadt, 2014
Resumo:
This paper is a reflection on the history and future of technology-enhanced learning. Over the last century various new technologies were introduced in education. Often, educational revolutions were proclaimed. Unfortunately, most of these new technologies failed to meet the high expectations. This paper reviews the rise and fall of various "revolutionary" learning technologies and analyses what went wrong. Three main driving factors are identified that influence the educational system: 1) educational practice, 2) educational research, and 3) educational technology. The role and position of these factors is elaborated and critically reviewed. Today, again many promising new technologies are being put in place for learning: gaming, social web, and mobile technologies, for example. Inevitably, these are once again proclaimed by its supporters to revolutionise teaching and learning. The paper concludes with identifying a number of relevant factors that substantiate a favourable future outlook of technology-enhanced learning.
Resumo:
Technology-Enhanced Learning in Higher Education is an anthology produced by the international association, Learning in Higher Education (LiHE). LiHE, whose scope includes the activities of colleges, universities and other institutions of higher education, has been one of the leading organisations supporting a shift in the education process from a transmission-based philosophy to a student-centred, learning-based approach. Traditionally education has been envisaged as a process in which the teacher disseminates knowledge and information to the student, and directs them to perform – instructing, cajoling, encouraging them as appropriate – despite different students’ abilities. Yet higher education is currently experiencing rapid transformation, with the introduction of a broad range of technologies which have the potential to enhance student learning. This anthology draws upon the experiences of those practitioners who have been pioneering new applications of technology in higher education, highlighting not only the technologies themselves but also the impact which they have had on student learning. The anthology illustrates how new technologies – which are increasingly well-known and accepted by today’s ‘digital natives’ undertaking higher education – can be adopted and incorporated. One key conclusion is that learning remains a social process even in technology-enhanced learning contexts. So the technology-based proxies we construct need to retain and reflect the agency of the teacher. Technology-Enhanced Learning in Higher Education showcases some of the latest pedagogical technologies and their most creative, state-of-the-art applications to learning in higher education from around the world. Each of the chapters explores technology-enhanced learning in higher education in terms of either policy or practice. They contain detailed descriptions of approaches taken in very different curriculum areas, and demonstrate clearly that technology may and can enhance learning only if it is designed with the learning process of students at its core. So the use of technology in education is more linked to pedagogy than it is to bits and bytes.
Resumo:
Whilst a variety of studies has appeared over the last decade addressing the gap between the potential promised by computers and the reality experienced in the classroom by teachers and students, few have specifically addressed the situation as it pertains to the visual arts classroom. The aim of this study was to explore the reality of the classroom use of computers for three visual arts highschool teachers and determine how computer technology might enrich visual arts teaching and learning. An action research approach was employed to enable the researcher to understand the situation from the teachers' points of view while contributing to their professional practice. The wider social context surrounding this study is characterised by an increase in visual communications brought about by rapid advances in computer technology. The powerful combination of visual imagery and computer technology is illustrated by continuing developments in the print, film and television industries. In particular, the recent growth of interactive multimedia epitomises this combination and is significant to this study as it represents a new form of publishing of great interest to educators and artists alike. In this social context, visual arts education has a significant role to play. By cultivating a critical awareness of the implications of technology use and promoting a creative approach to the application of computer technology within the visual arts, visual arts education is in a position to provide an essential service to students who will leave high school to participate in a visual information age as both consumers and producers.
Resumo:
The nature and characteristics of how learners learn today are changing. As technology use in learning and teaching continues to grow, its integration to facilitate deep learning and critical thinking becomes a primary consideration. The implications for learner use, implementation strategies, design of integration frameworks and evaluation of their effectiveness in learning environments cannot be overlooked. This study specifically looked at the impact that technology-enhanced learning environments have on different learners’ critical thinking in relation to eductive ability, technological self-efficacy, and approaches to learning and motivation in collaborative groups. These were explored within an instructional design framework called CoLeCTTE (collaborative learning and critical thinking in technology-enhanced environments) which was proposed, revised and used across three cases. The field of investigation was restricted to three key questions: 1) Do learner skill bases (learning approach and eductive ability) influence critical thinking within the proposed CoLeCTTE framework? If so, how?; 2) Do learning technologies influence the facilitation of deep learning and critical thinking within the proposed CoLeCTTE framework? If so, how?; and 3) How might learning be designed to facilitate the acquisition of deep learning and critical thinking within a technology-enabled collaborative environment? The rationale, assumptions and method of research for using a mixed method and naturalistic case study approach are discussed; and three cases are explored and analysed. The study was conducted at the tertiary level (undergraduate and postgraduate) where participants were engaged in critical technical discourse within their own disciplines. Group behaviour was observed and coded, attributes or skill bases were measured, and participants interviewed to acquire deeper insights into their experiences. A progressive case study approach was used, allowing case investigation to be implemented in a "ladder-like" manner. Cases 1 and 2 used the proposed CoLeCTTE framework with more in-depth analysis conducted for Case 2 resulting in a revision of the CoLeCTTE framework. Case 3 used the revised CoLeCTTE framework and in-depth analysis was conducted. The findings led to the final version of the framework. In Cases 1, 2 and 3, content analysis of group work was conducted to determine critical thinking performance. Thus, the researcher used three small groups where learner skill bases of eductive ability, technological self-efficacy, and approaches to learning and motivation were measured. Cases 2 and 3 participants were interviewed and observations provided more in-depth analysis. The main outcome of this study is analysis of the nature of critical thinking within collaborative groups and technology-enhanced environments positioned in a theoretical instructional design framework called CoLeCTTE. The findings of the study revealed the importance of the Achieving Motive dimension of a student’s learning approach and how direct intervention and strategies can positively influence critical thinking performance. The findings also identified factors that can adversely affect critical thinking performance and include poor learning skills, frustration, stress and poor self-confidence, prioritisations over learning; and inadequate appropriation of group role and tasks. These findings are set out as instructional design guidelines for the judicious integration of learning technologies into learning and teaching practice for higher education that will support deep learning and critical thinking in collaborative groups. These guidelines are presented in two key areas: technology and tools; and activity design, monitoring, control and feedback.
Resumo:
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification of this topic can provide a discovery experience for prospective secondary teachers and information technology students. Such experience can be extended to include a transition from a computationally driven conjecturing to a formal proof based on a number of simple yet useful techniques.
Resumo:
The evolution of technological systems is hindered by systemic components, referred to as reverse salients, which fail to deliver the necessary level of technological performance thereby inhibiting the performance delivery of the system as a whole. This paper develops a performance gap measure of reverse salience and applies this measurement in the study of the PC (personal computer) technological system, focusing on the evolutions of firstly the CPU (central processing unit) and PC game sub-systems, and secondly the GPU (graphics processing unit) and PC game sub-systems. The measurement of the temporal behavior of reverse salience indicates that the PC game sub-system is the reverse salient, continuously trailing behind the technological performance of the CPU and GPU sub-systems from 1996 through 2006. The technological performance of the PC game sub-system as a reverse salient trails that of the CPU sub-system by up to 2300 MHz with a gradually decreasing performance disparity in recent years. In contrast, the dynamics of the PC game sub-system as a reverse salient trails the GPU sub-system with an ever increasing performance gap throughout the timeframe of analysis. In addition, we further discuss the research and managerial implications of our findings.
Resumo:
Since the launch of the JISC guide Innovative Practice with e-Learning (JISC, 2005), so much has changed. At that time, early adopters were exploring the potential of mobile and wireless learning. Since then, the increased availability of public and institutional wireless networks, the emergence of new and more powerful technologies and an increase in personal ownership of these technologies are changing the way we connect, communicate and collaborate. Emerging Practice in a Digital Age, one of a series of Effective Practice guides, draws on recent JISC reports and case studies and looks at how colleges and universities are continuing to embrace innovation and respond to changes in economic, social and technological circumstances in a fastchanging world.
Resumo:
Y. Zhu, S. Williams and R. Zwiggelaar, 'Computer technology in detection and staging of prostate carcinoma: a review', Medical Image Analysis 10 (2), 178-199 (2006)