798 resultados para computer science education
Resumo:
Murphy, L. and Thomas, L. 2008. Dangers of a fixed mindset: implications of self-theories research for computer science education. In Proceedings of the 13th Annual Conference on innovation and Technology in Computer Science Education (Madrid, Spain, June 30 - July 02, 2008). ITiCSE '08. ACM, New York, NY, 271-275.
Resumo:
Bibliography: p. 141-143.
Resumo:
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
Resumo:
Computer science studies possess a strong multidisciplinary aptitude since most graduates do their professional work outside of a computing environment, in close collaboration with professionals from many different areas. However, the training offered in computer science studies lacks that multidisciplinary factor, focusing more on purely technical aspects. In this paper we present a novel experience where computer studies and educational psychology find a common ground and realistic working through laboratory practices. Specifically, the work enables students of computer science education the development of diagnosis support systems, with artificial intelligence techniques, which could then be used for future educational psychologists. The applications developed by computer science students are the creation of a model for the diagnosis of pervasive developmental disorders (PDD), sometimes also commonly called the autism spectrum disorders (ASD). The complexity of this diagnosis, not only by the exclusive characteristics of every person who suffers from it, but also by the large numbers of variables involved in it, requires very strong and close interdisciplinary participation. This work demonstrates that it is possible to intervene in a curricular perspective, in the university, to promote the development of interpersonal skills. What can be shown, in this way, is a methodology for interdisciplinary practices design and a guide for monitoring and evaluation. The results are very encouraging since we obtained significant differences in academic achievement between students who attended a course using the new methodology and those who did not use it.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
The quantitative component of this study examined the effect of computerassisted instruction (CAI) on science problem-solving performance, as well as the significance of logical reasoning ability to this relationship. I had the dual role of researcher and teacher, as I conducted the study with 84 grade seven students to whom I simultaneously taught science on a rotary-basis. A two-treatment research design using this sample of convenience allowed for a comparison between the problem-solving performance of a CAI treatment group (n = 46) versus a laboratory-based control group (n = 38). Science problem-solving performance was measured by a pretest and posttest that I developed for this study. The validity of these tests was addressed through critical discussions with faculty members, colleagues, as well as through feedback gained in a pilot study. High reliability was revealed between the pretest and the posttest; in this way, students who tended to score high on the pretest also tended to score high on the posttest. Interrater reliability was found to be high for 30 randomly-selected test responses which were scored independently by two raters (i.e., myself and my faculty advisor). Results indicated that the form of computer-assisted instruction (CAI) used in this study did not significantly improve students' problem-solving performance. Logical reasoning ability was measured by an abbreviated version of the Group Assessment of Lx)gical Thinking (GALT). Logical reasoning ability was found to be correlated to problem-solving performance in that, students with high logical reasoning ability tended to do better on the problem-solving tests and vice versa. However, no significant difference was observed in problem-solving improvement, in the laboratory-based instruction group versus the CAI group, for students varying in level of logical reasoning ability.Insignificant trends were noted in results obtained from students of high logical reasoning ability, but require further study. It was acknowledged that conclusions drawn from the quantitative component of this study were limited, as further modifications of the tests were recommended, as well as the use of a larger sample size. The purpose of the qualitative component of the study was to provide a detailed description ofmy thesis research process as a Brock University Master of Education student. My research journal notes served as the data base for open coding analysis. This analysis revealed six main themes which best described my research experience: research interests, practical considerations, research design, research analysis, development of the problem-solving tests, and scoring scheme development. These important areas ofmy thesis research experience were recounted in the form of a personal narrative. It was noted that the research process was a form of problem solving in itself, as I made use of several problem-solving strategies to achieve desired thesis outcomes.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
This article presents an interdisciplinary experience that brings together two areas of computer science; didactics and philosophy. As such, the article introduces a relatively unexplored area of research, not only in Uruguay but in the whole Latin American region. The reflection on the ontological status of computer science, its epistemic and educational problems, as well as their relationship with technology, allows us to elaborate a critical analysis of the discipline and a social perception of it as a basic science.
Resumo:
The very nature of computer science with its constant changes forces those who wish to follow to adapt and react quickly. Large companies invest in being up to date in order to generate revenue and stay active on the market. Universities, on the other hand, need to imply same practices of staying up to date with industry needs in order to produce industry ready engineers. By interviewing former students, now engineers in the industry, and current university staff this thesis aims to learn if there is space for enhancing the education through different lecturing approaches and/or curriculum adaptation and development. In order to address these concerns a qualitative research has been conducted, focusing on data collection obtained through semi-structured live world interviews. The method used follows the seven stages of research interviewing introduced by Kvale and focuses on collecting and preparing relevant data for analysis. The collected data is transcribed, refined, and further on analyzed in the “Findings and analysis” chapter. The focus of analyzing was answering the three research questions; learning how higher education impacts a Computer Science and Informatics Engineers’ job, how to better undergo the transition from studies to working in the industry and how to develop a curriculum that helps support the previous two. Unaltered quoted extracts are presented and individually analyzed. To paint a better picture a theme-wise analysis is presented summing valuable themes that were repeated throughout the interviewing phase. The findings obtained imply that there are several factors directly influencing the quality of education. From the student side, it mostly concerns expectation and dedication involving studies, and from the university side it is commitment to the curriculum development process. Due to the time and resource limitations this research provides findings conducted on a narrowed scope, although it can serve as a great foundation for further development; possibly as a PhD research.
Resumo:
Tuesday 22nd April 2014 Speaker(s): Sue Sentance Organiser: Leslie Carr Time: 22/04/2014 15:00-16:00 Location: B32/3077 File size: 698 Mb Abstract Until recently, "computing" education in English schools mainly focused on developing general Digital Literacy and Microsoft Office skills. As of this September, a new curriculum comes into effect that provides a strong emphasis on computation and programming. This change has generated some controversy in the news media (4-year-olds being forced to learn coding! boss of the government’s coding education initiative cannot code shock horror!!!!) and also some concern in the teaching profession (how can we possibly teach programming when none of the teachers know how to program)? Dr Sue Sentance will explain the work of Computing At School, a part of the BCS Academy, in galvanising universities to help teachers learn programming and other computing skills. Come along and find out about the new English Computing Revolution - How will your children and your schools be affected? - How will our University intake change? How will our degrees have to change? - What is happening to the national perception of Computer Science?
Resumo:
Abstract: As one of the newest art forms available to young people, gaming has become an increasing influence on young people’s education, even if not used in a classroom environment. This talk aims to explore examples of how video games have changed how young people understand and learn about certain subjects, with particular focus on how the indie title Minecraft allows them to learn about the world of Computer Science and how groups are looking to forward the cause of education though games.
Resumo:
In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.
Resumo:
This paper describes an innovative approach to develop the understanding about the relevance of mathematics to computer science. The mathematical subjects are introduced through an application-to-model scheme that lead computer science students to a better understanding of why they have to learn math and learn it effectively. Our approach consists of a single one semester course, taught at the first semester of the program, where the students are initially exposed to some typical computer applications. When they recognize the applications' complexity, the instructor gives the mathematical models supporting such applications, even before a formal introduction to the model in a math course. We applied this approach at Unesp (Brazil) and the results include a large reduction in the rate of students that abandon the college and better students in the final years of our program.