955 resultados para computed radiography
Resumo:
PURPOSE: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. METHODS: Ten high-exposure open field images were taken with an RQA5 spectrum, using a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. RESULTS: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm(-1). At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam spectra. CONCLUSIONS: This study demonstrates that a simple gain-map can be used to correct for the fixed-pattern noise in a given plate and thus improve the DQE of CR imaging. Such a method could easily be implemented by manufacturers because each plate has a unique bar code and the gain-map for all plates associated with a reader could be stored for future retrieval. These experiments indicated that an improvement in NPS (and hence, DQE) is possible, depending on exposure level, over a wide range of frequencies with this technique.
Resumo:
The daily-to-day of medical practice is marked by a constant search for an accurate diagnosis and therapeutic assessment. For this purpose the doctor serves up a wide variety of imaging techniques, however, the methods using ionizing radiation still the most widely used because it is considered cheaper and above all very efficient when used with control and quality. The optimization of the risk-benefit ratio is considered a major breakthrough in relation to conventional radiology, though this is not the reality of computing and digital radiology, where Brazil has not established standards and protocols for this purpose. This work aims to optimize computational chest radiographs (anterior-posterior projection-AP). To achieve this objective were used a homogeneous phantoms that simulate the characteristics of absorption and scattering of radiation close to the chest of a patient standard. Another factor studied was the subjective evaluation of image quality, carried out by visual grading assessment (VGA) by specialists in radiology, using an anthropomorphic phantom to identify the best image for a particular pathology (fracture or pneumonia). Quantifying the corresponding images indicated by the radiologist was performed from the quantification of physical parameters (Detective Quantum Efficiency - DQE, Modulation Transfer Function - MTF and Noise Power Spectrum - NPS) using the software MatLab®. © 2013 Springer-Verlag.
Resumo:
The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.
Resumo:
In the northeast of Brazil, caprine arthritis-encephalitis (CAE) is one of the key reasons for herd productivity decreasing that result in considerable economic losses. A comparative study was carried out using computed radiography (CR), histological analysis (HA), and scanning electronic microscopy (SEM) of the joints of CAE infected and normal goats. Humerus head surface of positive animals presented reduced joint space, increased bone density, and signs of degenerative joint disease (DJD). The carpal joint presented no morphological alterations in CR in any of the animals studied. Tarsus joint was the most affected, characterized by severe DJD, absence of joint space, increased periarticular soft tissue density, edema, and bone sclerosis. Histological analysis showed chronic tissue lesions, complete loss of the surface zone, absence of proteoglycans in the transition and radial zones and destruction of the cartilage surface in the CAE positive animals. Analysis by SEM showed ulcerated lesions with irregular and folded patterns on the joint surface that distinguished the limits between areas of normal and affected cartilage. The morphological study of the joints of normal and CAE positive goats deepened understanding of the alteration in the tissue bioarchitecture of the most affected joints. The SEM finding sustained previous histological reports, similar to those found for rheumatoid arthritis, suggesting that the goat infected with CAE can be considered as a potential model for research in this area.
Resumo:
OBJECTIVE: In this experimental study we assessed the diagnostic performance of digital linear slit scanning radiography compared with computed radiography (CR) for the detection of urinary calculi in an anthropomorphic phantom imitating patients weighing approximately 58-88 kg. CONCLUSION: Compared with CR, linear slit scanning radiography is superior for the detection of urinary stones and may be used for pretreatment localization and follow-up at a lower patient exposure.
Resumo:
The purpose of this retrospective study was to intra-individually compare the image quality of computed radiography (CR) and low-dose linear-slit digital radiography (LSDR) for supine chest radiographs. A total of 90 patients (28 female, 62 male; mean age, 55.1 years) imaged with CR and LSDR within a mean time interval of 2.8 days +/- 3.0 were included in this study. Two independent readers evaluated the image quality of CR and LSDR based on modified European Guidelines for Quality Criteria for chest X-ray. The Wilcoxon test was used to analyse differences between the techniques. The overall image quality of LSDR was significantly better than the quality of CR (9.75 vs 8.16 of a maximum score of 10; p < 0.001). LSDR performed significantly better than CR for delineation of anatomical structures in the mediastinum and the retrocardiac lung (p < 0.001). CR was superior to LSDR for visually sharp delineation of the lung vessels and the thin linear structures in the lungs. We conclude that LSDR yields better image quality and may be more suitable for excluding significant pathological features of the chest in areas with high attenuation compared with CR.
Resumo:
This paper presents a novel approach to the computed assessment of a mammographic phantom device. The approach shown here is fully automated and is based on the automatic selection of the region of interest, in the use of the discrete wavelet transform (DWT) and morphological operators to assess the quality of the American College of Radiology (ACR) mammographic phantom images. The algorithms developed here have succesfully scored 30 images obtained with different combinations of voltage applied to the tube and exposure and could notice the differences in the radiographs due to the different level of exposure to radiation. © 2013 Springer-Verlag.
Resumo:
The objective of our study was to compare the performance of low-dose linear slit digital radiography (DR) with computed radiography (CR) for the detection of trauma sequelae in the chest including rib fractures, pneumothorax, and lung contusion.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab (R). The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior anterior or anterior posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.
Resumo:
This project aims the verification of doses in canines and felines to chest and coxal exams due to the transition from screen-film to computed radiography system. It also seeks a possible optimization of the new techniques employed in this new system. The study was carried out in Diagnostic Imaging service in Hospital Veterinário da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo using a conventional x-ray equipment. Initially, data about the physical characteristics of animals and the technique currently used in computed radiography was collected for each of 80 chest and 16 coxal X-ray examinations. The animals were divided into different groups according to the body weight. For each group, were calculated the averages of each item: thickness of the region to be imaged, voltage, current, exposure time, current-time product, size of film used, presence or absence of bucky and focus (small or large). The techniques have been reproduced in phantoms (representative of the thickness of the animal) in order to collect the air kerma entrance. Based on the average of intermediate size M group (weights less than 5 kg for cats and from 10.1 kg and 20 kg for dogs) analysis of image quality using three devices test patterns were made consisting of the evaluation of spatial resolution, low-contrast resolution and contrast-detail. In general, the results showed the dose animals decreased with the use of computed radiography and was possible to preliminary optimization of some techniques used currently in CR
Resumo:
Computed Radiography (CR) is a term used to describe the system that electronically records a radiographic image. CR systems use receivers or IP (imaging plate) to capture the analog signals and then allow the readers to do the image processing and converted into digital information. With the increasing expansion of the CR for medical diagnostics it is necessary that these systems receive the same type of monitoring related to Quality Control and Acceptance to the conventional processing systems. The current legislation fails to specify the parameters and procedures to be tested, allowing that somehow, some equipment is not fully able to use in clinical routine. In this project we used the standard AAPM Report Number 93, which is already fully established outside the country and displays all test parameters in CR. From there were chosen three types of tests that were performed in a satisfactory sampling of IP´s. With this procedure it was possible to establish which of those IP's should be out of use, which reveals the important purpose of the study, demonstrating the need for Quality Control Testing and Acceptance in Computerized Radiography as soon as possible are included in the legislation regulator in the country
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)