992 resultados para collagen structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of hydroxyproline residues stabilizing the collagen triple-helical structure by the formation of additional hydrogen bonds through their γ-hydroxyl group has been studied from structural considerations. It is not possible for this hydroxyl group to form a direct hydrogen bond with a suitable group in a neighbouring chain of the triple-helical protofibril. However, in the modified one-bonded structure, which is stabilized by additional hydrogen bonds being formed through water molecules as intermediaries (put forward in 1968 by Ramachandran, G. N. and Chandrasekharan, R.), it is found that the γ-hydroxyl group of hydroxyproline can form a good hydrogen bond with the water oxygen as acceptor, the hydrogen bond length being 2.82 Å. It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond. Experimental studies on the determination of shrinkage and denaturation temperatures of native collagen and its synthetic analogues, as a function of their hydroxyproline content, are being undertaken to test this hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular structure of collagen is now accepted to be based on a triple-stranded coiled-coil, in which the three strands are held together predominantly by hydrogen bonds. Recent experimental evidence has shown that the presence of hydroxyproline residues in the third position of the repeating tripeptide unit lends additional stability to the collagen structure. In this paper, we report a model structure, which is supported by these observations. In a model structure proposed earlier, there are two hydrogen bonds per tripeptide unit, one of which is a direct interchain hydrogen bond, while the second hydrogen bond can be formedvia a water molecule. It has now been shown that the same water molecule can also form a hydrogen bond with the oxygen of theγ-hydroxyl group of hydroxyproline in the third position in the sequence (Gly-R2-R3). This hydroxyl group can also take part in an inter-triple-helix hydrogen bond. Our studies thus show the role played by hydroxyproline residues in the structure and stability of collagen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the collagen triple-helical structure, large side groups occuring at location 3 in the repeating triplet sequences (Gly-Rz-Rz)n are appreciably constrained if a proline residue occurs as Rz in a neighbouring chain. The severity of the steric hindrance depends on the geometry of the prolyl ring. In this paper we propose two different puckerir.gs for the proline ring, the first one being energetically favorable for most types of residue sequences commonly found in collegen while the second is preferable when an amino acid residue with a large side group occurs at location 3 in a neighbouring chain. The puckering of the pyrrolidine ring of hydroxyproline, as proposed earlier, is quite favorable from energy as well as stereochemical considerations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary structure of collagen is characterized by the repeating tripeptide sequence (Gly-R2-R3)n. The results of theoretical studies, carried out using contact criteria to compute the stereochemically allowed orientations for various side chains at locations 2 and 3, are reported here. It is found that side chains with only γ-atoms, as in valine, serine and threonine, or with only one δ-methyl group, as in isoleucine, can occur equally well at locations 2 and 3, as is actually the case in collagen. Side chains with two Cδ-atoms, as in leucine and phenyl-alanine, can also be accommodated at both positions. However, if they occur as R3 their freedom of orientation is severely restricted in the presence of a proline residue as R2 in a neighbouring chain. If water molecules bound to the chains of the triple helix are assumed to be present, then location 3 is virtually impossible for leucine and phenylalanine residues. Location 2 is, however, unaffected, and their presence as R2 can help to shield the water molecules from disturbance by the solvent medium. This may be the reason for the preferential occurrence of Leu and Phe residues in location 2 in the collagen triplets, although the polypeptides (Gly-Pro-Leu)n and (Gly-Pro-Phe)n form collagen-like structures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scaffolds manufactured from biological materials promise better clinical functionality, providing that characteristic features are preserved. Collagen, a prominent biopolymer, is used extensively for tissue engineering applications, because its signature biological and physico-chemical properties are retained in vitro preparations. We show here for the first time that the very properties that have established collagen as the leading natural biomaterial are lost when it is electro-spun into nano-fibres out of fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol or 2,2,2-trifluoroethanol. We further identify the use of fluoroalcohols as the major culprit in the process. The resultant nano-scaffolds lack the unique ultra-structural axial periodicity that confirms quarter-staggered supramolecular assemblies and the capacity to generate second harmonic signals, representing the typical crystalline triple-helical structure. They were also characterised by low denaturation temperatures, similar to those obtained from gelatin preparations ( p > 0.05). Likewise, circular dichroism spectra revealed extensive denaturation of the electro-spun collagen. Using pepsin digestion in combination with quantitative SDS-PAGE, we corroborate great losses of up to 99% of triple-helical collagen. In conclusion, electro-spinning of collagen out of fluoroalcohols effectively denatures this biopolymer, and thus appears to defeat its purpose, namely to create biomimetic scaffolds emulating the collagen structure and function of the extracellular matrix.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a "response" to burn injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study porcine skin and bovine pericardium were used as a source of type I collagen. Both were submitted to an alkaline treatment and mineralized by the alternate soaking method. Thermal stability and extent of mineralization have been investigated using DSC and TG. After alkaline hydrolysis there is a decrease in thermal stability but mineralization stabilizes collagen structure. Thermogravimetric data have shown that the amount of hydroxyapatite present in bovine pericardium matrix (45%) was greater than on porcine skin matrix (20%). Presence of hydroxyapatite was confirmed by EDX.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collagen makes up one third of the total protein in humans, being formed by the connection of three polypeptide chains arranged in a triple helix. This protein has fundamental importance in the formation of extracellular matrix of connective tissue. This study aimed to analyze the structural changes of collagen, which are resulting from inflammatory processes in oral mucosa, and to make the comparative analysis between the histopathology and the Raman spectra. The samples of tissues with inflammatory fibrous hyperplasia (IFH) and normal mucosa (NM) were evaluated by Raman Spectroscopy, hematoxylin-eosin and Massons trichrome stain. The histological analysis in both stains showed differences in collagen fibers, which was presented as thin fibers and arranged in parallel direction in NM and as collagen fibers are thick, mature and not organized, showing that these types of stain show morphological changes of collagen in IFH. The Raman Spectroscopy discriminate the groups of NM and IFH based on vibrational modes of proline, hydroxiproline and CH3, CH2. The histological stains only shows information from morphological data, and can be complemented by Raman spectra. This technique could demonstrate that inflammatory process caused some changes in collagen structure which is related to aminoacids such as proline and hidroxyproline. © 2011 SPIE-OSA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a response to burn injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Madras triple helix’ was the name assigned by the scientific community in the West, to the molecular model proposed for the fibrous protein collagen, by G N Ramachandran’s group at the University of Madras. As mentioned jocularly in a recent retrospective of this work by Sasisekharan and Yathindra [1], the term was possibly coined due to the difficulty of Western scientists in pronouncing the Indian names of Ramachandran and his associates. The unravelling of the precise nature of collagen structure indeed makes for a fascinating story and as succinctly put by Dickerson [2]: “... to trace the evolution of the structure of collagen is to trace the evolution of fibrous protein crystallography in miniature”. This article is a brief review highlighting the pioneering contributions made by G N Ramachandran in elucidating the correct structure of this important molecule and is a sincere tribute by the author to her mentor, doctoral thesis supervisor and major source of inspiration for embarking on a career in biophysics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gelatin is widely used in food, pharmaceutical, and photographic industries due to the coil-helix transition, whereas the structural inhomogeneity considerably affects its essential properties closely connecting with the industrial applications. The spatially structural inhomogeneity of the gelatin caused by the uneven and unstable temperature field is analyzed by the finite element method during the cooling-induced coil-helix transition process. The helix conversion and the crosslinking density as functions of time and spatial grid are calculated by the incremental method. A length distribution density function is introduced to describe the continuous length distributions of two kinds of triple helices.