940 resultados para clausal resolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clausal resolution method for propositional linear-time temporal logic is well known and provides the basis for a number of temporal provers. The method is based on an intuitive clausal form, called SNF, comprising three main clause types and a small number of resolution rules. In this paper, we show how the normal form can be radically simplified, and consequently, how a simplified clausal resolutioin method can be defined for this impoprtant variety of logics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of the logic was not previously available. However, a breakthrough by Hodkinson et al., identifying a finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate proof techniques for this monodic fragment.In this paper, we modify and extend the clausal temporal resolution technique, originally developed for propositional temporal logics, to enable its use in such monodic fragments. We develop a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus for formulae in this form. Not only is this clausal resolution technique useful as a practical proof technique for certain monodic classes, but the use of this approach provides us with increased understanding of the monodic fragment. In particular, we here show how several features of monodic FOTL can be established as corollaries of the completeness result for the clausal temporal resolution method. These include definitions of new decidable monodic classes, simplification of existing monodic classes by reductions, and completeness of clausal temporal resolution in the case of monodic logics with expanding domains, a case with much significance in both theory and practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. Although a complete and correct resolution-style calculus has already been suggested for this specific fragment, this calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-oriented clausal resolution method which features radically simplified proof search. We first define a normal form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we propose a new approach to deduction methods for temporal logic. Our proposal is based on an inductive definition of eventualities that is different from the usual one. On the basis of this non-customary inductive definition for eventualities, we first provide dual systems of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt the deductive approach introduced by means of these dual tableau and sequent systems to the resolution framework and we present a clausal temporal resolution method for PLTL. Finally, we make use of this new clausal temporal resolution method for establishing logical foundations for declarative temporal logic programming languages. The key element in the deduction systems for temporal logic is to deal with eventualities and hidden invariants that may prevent the fulfillment of eventualities. Different ways of addressing this issue can be found in the works on deduction systems for temporal logic. Traditional tableau systems for temporal logic generate an auxiliary graph in a first pass.Then, in a second pass, unsatisfiable nodes are pruned. In particular, the second pass must check whether the eventualities are fulfilled. The one-pass tableau calculus introduced by S. Schwendimann requires an additional handling of information in order to detect cyclic branches that contain unfulfilled eventualities. Regarding traditional sequent calculi for temporal logic, the issue of eventualities and hidden invariants is tackled by making use of a kind of inference rules (mainly, invariant-based rules or infinitary rules) that complicates their automation. A remarkable consequence of using either a two-pass approach based on auxiliary graphs or aone-pass approach that requires an additional handling of information in the tableau framework, and either invariant-based rules or infinitary rules in the sequent framework, is that temporal logic fails to carry out the classical correspondence between tableaux and sequents. In this thesis, we first provide a one-pass tableau method TTM that instead of a graph obtains a cyclic tree to decide whether a set of PLTL-formulas is satisfiable. In TTM tableaux are classical-like. For unsatisfiable sets of formulas, TTM produces tableaux whose leaves contain a formula and its negation. In the case of satisfiable sets of formulas, TTM builds tableaux where each fully expanded open branch characterizes a collection of models for the set of formulas in the root. The tableau method TTM is complete and yields a decision procedure for PLTL. This tableau method is directly associated to a one-sided sequent calculus called TTC. Since TTM is free from all the structural rules that hinder the mechanization of deduction, e.g. weakening and contraction, then the resulting sequent calculus TTC is also free from this kind of structural rules. In particular, TTC is free of any kind of cut, including invariant-based cut. From the deduction system TTC, we obtain a two-sided sequent calculus GTC that preserves all these good freeness properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical correspondence between tableaux and sequent calculi can be extended to temporal logic. The most fruitful approach in the literature on resolution methods for temporal logic, which was started with the seminal paper of M. Fisher, deals with PLTL and requires to generate invariants for performing resolution on eventualities. In this thesis, we present a new approach to resolution for PLTL. The main novelty of our approach is that we do not generate invariants for performing resolution on eventualities. Our method is based on the dual methods of tableaux and sequents for PLTL mentioned above. Our resolution method involves translation into a clausal normal form that is a direct extension of classical CNF. We first show that any PLTL-formula can be transformed into this clausal normal form. Then, we present our temporal resolution method, called TRS-resolution, that extends classical propositional resolution. Finally, we prove that TRS-resolution is sound and complete. In fact, it finishes for any input formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL. In the field of temporal logic programming, the declarative proposals that provide a completeness result do not allow eventualities, whereas the proposals that follow the imperative future approach either restrict the use of eventualities or deal with them by calculating an upper bound based on the small model property for PLTL. In the latter, when the length of a derivation reaches the upper bound, the derivation is given up and backtracking is used to try another possible derivation. In this thesis we present a declarative propositional temporal logic programming language, called TeDiLog, that is a combination of the temporal and disjunctive paradigms in Logic Programming. We establish the logical foundations of our proposal by formally defining operational and logical semantics for TeDiLog and by proving their equivalence. Since TeDiLog is, syntactically, a sublanguage of PLTL, the logical semantics of TeDiLog is supported by PLTL logical consequence. The operational semantics of TeDiLog is based on TRS-resolution. TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal logic programming language that achieves this high degree of expressiveness. Since the tableau method presented in this thesis is able to detect that the fulfillment of an eventuality is prevented by a hidden invariant without checking for it by means of an extra process, since our finitary sequent calculi do not include invariant-based rules and since our resolution method dispenses with invariant generation, we say that our deduction methods are invariant-free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.