42 resultados para cineole


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Penetration enhancers are chemicals that temporarily and reversibly diminish the barrier function of the outermost layer of skin, the stratum corneum, to facilitate drug delivery to and through the tissue. In the current study, the complex mechanisms by which 1,8-cineole, a potent terpene penetration enhancer, disrupts the stratum corneum barrier is investigated using post-mortem skin samples. In order to validate the use of excised tissue for these and related studies, a fibre optical probe coupled to an FT-Raman spectrometer compared spectroscopic information for human skin recorded from in vivo and in vitro sampling arrangements. Spectra from full-thickness (epidermis and dermis) post-mortem skin samples presented to the spectrometer with minimal sample preparation (cold acetone rinse) were compared with the in vivo system (the forearms of human volunteers). No significant differences in the Raman spectra between the in vivo and in vitro samples were observed, endorsing the use of post-mortem or surgical samples for this investigational work. Treating post-mortem samples with the penetration enhancer revealed some unexpected findings: while evidence for enhancer-induced disruption of the barrier lipid packing in the stratum corneum was detected in some samples, spectra from other samples revealed an increase in lipid order on treatment with the permeation promoter. These findings are consistent with phase-separation of the enhancer within the barrier lipid domains as opposed to homogeneous disruption of the lipid lamellae. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to D-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and D-camphor are C-10 monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 Angstrom resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe2S2 redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trials to identify alternative cropping options to Melaleuca alternifolia for northern Queensland essential oil growers were established at Dimbulah and Innot Hot Springs in 2001. Seed sources of Asteromyrtus symphyocarpa (1,8-cineole form), Eucalyptus staigeriana (citral), Melaleuca cajuputi subsp. cajuputi (trans-nerolidol), M. ericifolia (d-linalool), M. quinquenervia (trans-nerolidol and viridiflorol forms) and M. viridiflora (methyl cinnamate) with potential to produce commercial foliar oils were evaluated. Information was gathered on their adaptability, growth and oil yields over 49 months and 52 months (two harvests) from planting at Dimbulah and Innot Hot Springs, respectively. Of the species and chemotypes evaluated, M. quinquenervia showed potential for commercial production of trans-nerolidol, a compound used in perfumery. It had a very high survival rate (96%) and yields could be expected to improve dramatically from the average 100 kg/ha per harvest achieved in these trials with further research into selection of seed source, control of insect damage and breeding for genetic improvement. M. cajuputi subsp. cajuputi gave a similar performance to M. quinquenervia. The rarity of the trans-nerolidol form of this species and remoteness of its natural occurrence are impediments to further planting and research. E. staigeriana, with second harvest yields of ~600 kg/ha, performed exceptionally well on both sites but potential for development is limited by the ready availability of competitively priced E. staigeriana oil produced in South America. Survival of M. ericifolia ranged from 62% to 82% at 32 months (second harvest) at Innot Hot Springs and was deemed a failure at Dimbulah with poor growth and low survival, raising a major question about the suitability of this species for cultivation in the seasonally dry tropics. Planting of this species on a wider scale in northern Queensland cannot be recommended until more is known about factors affecting its survival. A. symphyocarpa and M. viridiflora were too slow-growing to warrant further consideration as potential oil-producing species at this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foliar oils, particularly monoterpenes, can influence the susceptibility of plants to herbivory. In plants, including eucalypts, monoterpenes are often associated with plant defence. A recent analysis revealed an increase in foliar oil content with increasing latitudinal endemism, and we tested this pattern using three eucalypt taxa comprising a latitudinal replacement cline. We also examined the relative concentrations of two monoterpenes (alpha-pinene and 1,8-cineole), for which meta-analyses also showed latitudinal variation, using hybrids of these three taxa with Corymbia torelliana. These, and pure C. torelliana, were then assessed in common-garden field plots for the abundance and distribution of herbivory by four distinct herbivore taxa. Differing feeding strategies among these herbivores allowed us to test hypotheses regarding heritability of susceptibility and relationships to alpha-pinene and 1,8-cineole. We found no support for an increase in foliar oil content with increasing latitude, nor did our analysis support predictions for consistent variation in alpha-pinene and 1,8-cineole contents with latitude. However, herbivore species showed differential responses to different taxa and monoterpene contents. For example, eriophyid mites, the most monophagous of our censused herbivores, avoided the pure species, but fed on hybrid taxa, supporting hypotheses on hybrid susceptibility. The most polyphagous herbivore (leaf blister sawfly Phylacteophaga froggatti) showed no evidence of response to plant secondary metabolites, while the distribution and abundance patterns of Paropsis atomaria showed some relationship to monoterpene yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microorganism of the genus Pseudomonas has been isolated from the soil by enrichment culture techniques with linalool(I) as the sole source of carbon and energy. The organism is also capable of utilizing limonene, citronellol, and geraniol as substrates but fails to grow on citral, critranellal, and 1,8-cineole. Fermentation of linalool by this bacterium in a mineral salt medium results in the formation of 10-hydroxylinalool(II), oleuropeic acid (IX), 2-vinyl-2-methyl-5-hydroxyisopropyl-tetraphydrofuran)linalool oxide, V), 2-vinyl-2-methyl-tetrahydrofuran-5-one(unsaturated lactone, VI), and few unidentified minor metabolities. Probable pathways for the biodegradation of linalool are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schinus molle L. is commonly known as pink pepper or American pepper, of Anacardiaceae family, from subtropical regions of South America, introduced and naturalized in South Europe, including Portugal. In folk medicine, plant extracts and essential oil has related as having antibacterial, antiviral, antifungal, anti-inflammatory, antitumoral, antispasmodic, analgesic and antidepressive properties. The aim of present study was to evaluate the chemical composition and biological activities of essential oil extracted from leaves and fruits of S. molle. For this purpose, the essential oils were analyzed by gas chromatography (GC/FID) and antioxidant properties were evaluated by the free radical DPPH and by system β-carotene/linoleic acid methods. The antimicrobial activities were screened against pathogenic bacteria and fungi and food spoiling fungi by the disc diffusion assay and minimal inhibitory concentration (MIC) was determined for sensitive strains. Toxicity of essential oils were carried out by the brine shrimp mortality test (EC50) and acute lethal dose (DL50) determination after oral administration in Swiss mice The major components in leaf essential oil were α-phellandrene, β-phellandrene and limonene, while myrcene, α-phellandrene and 1,8-cineole are the main components in the fruit essential oil. The essential oils of leaf and fruit of S. molle showed antioxidant activity through the two mechanisms: the ability to capture free radicals and protection of lipid peroxidation. These oils exhibited also a broad microbial activity spectrum, against pathogenic bacteria Gram-positive and Gram-negative and Candida spp. The fruit essential oil showed high cytotoxicity against Artemia salina. Essential oils of leaves and fruits of S. molle showed significant antioxidant and microbial properties, so the studies continue to clarify more in deep its toxicity, including hepatotoxicity and nephrotoxicity, and to evaluate its medicinal or nutraceutical potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Thymus species are wild species mostly found in the arid lands of Portugal. Possible antimicrobial properties of Thymus essential oils have been investigated. The chemical composition of the essential oils and the antimicrobial activity of Thymus mastichina (L) L. subsp. mastichina , T. camphoratus and T. lotocephalus from different regions of Portugal were analysed. Methods and Results: Hydrodistillation was used to isolate the essential oils and the chemical analyses were performed by gas chromatography (GC) and GC coupled to mass spectrometry. The antimicrobial activity was tested by the disc agar diffusion technique against Candida albicans , Escherichia coli , Listeria monocytogenes , Proteus mirabilis , Salmonella spp. and Staphylococcus aureus . Pure linalool, 1,8-cineole and a mixture (1:1) of these compounds were included. Linalool, 1,8-cineole or linalool/1,8-cineole and linalool/1,8-cineole/linalyl acetate were the major components of the essential oils, depending on the species or sampling place. The essential oils isolated from the Thymus species studied demonstrated antimicrobial activity but the micro-organisms tested had significantly different sensitivities. Conclusions: The antimicrobial activity of essential oils may be related to more than one component. Significance and Impact of the Study: Portuguese endemic species of Thymus can be used for essential oil production for food spoilage control, cosmetics and pharmaceutical use. Further studies will be required to elucidate the cell targets of the essential oil components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial super-infections resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential of 1,8-cineole for treating primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates Poly(I:C)-induced activity of the anti-viral transcription factor Interferon Regulatory Factor 3, while simultaneously reducing pro-inflammatory NF-κB-activity in human cell lines, inferior turbinate stem cells (ITSCs) and ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with Poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared to Poly(I:C) alone, whereas NF-κB-activity was reduced. Accordingly, 1,8-cineole- and Poly(I:C)-treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared to the Poly(I:C)-treated approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with LPS and 1,8-cineole compared to the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on pro-inflammatory NF-κB-signalling and may thus broaden its field of application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition and the antimicrobial activity of the essential oil from Croton heterocalyx leaves were evaluated. The oil which was analyzed by GC and GUMS was found to contain germacrene D (12.5%), bicyclogermacrene (11.2%), delta-elemene (9.2%) beta-elemene (8.2%), spathulenol (6.9%), linalool (5.4%) and 1,8-cineole (3.7%) its major components. Croton. heterocalyx oil displayed a high inhibitory activity against the fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231.) as well its the Gram-positive bacterium Staphylococcus aureus (ATCC 6538), hut a very weak activity was observed for the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoterpenes, the main constituents of essential oils, are known for their many biological activities. The present work studied the potential biological activity of twenty-seven monoterpenes, including monoterpene hydrocarbons and oxygenated ones, against seed germination and subsequent primary radicle growth of Raphanus sativus L. (radish) and Lepidium sativum L. (garden cress), under laboratory conditions. The compounds, belonging to different chemical classes, showed different potency in affecting both parameters evaluated. The assayed compounds demonstrated a good inhibitory activity in a dose-dependent way. In general, radish seed is more sensitive than garden cress and its germination appeares more inhibited by alcohols; at the highest concentration tested, the more active substances were geraniol, borneol, (+/-)-beta-citronellol and alpha-terpineol. Geraniol and carvone inhibited, in a significant way, the germination of garden cress, at the highest concentration tested. Radicle elongation of two test species was inhibited mainly by alcohols and ketones. Carvone inhibited the radicle elongation of both seeds, at almost all concentrations assayed, while 1,8-cineole inhibited their radicle elongation at the lowest concentrations (10(-5) M, 10(-6) M).