843 resultados para chitosan nanoparticles
Resumo:
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Resumo:
The use of slow release fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled release systems. However, there are no attempts to explore the potential of chitosan nanoparticles as controlled release for NPK fertilizers. In this work chitosan nanoparticles were obtained by polymerizing methacrylic acid for the incorporation of NPK fertilizers. The interaction and stability of chitosan nanoparticle suspensions containing nitrogen (N), phosphorus (P) and potassium (K) were evaluated by FTIR spectroscopy, particle size analysis and zeta-potential. The FTIR results indicated the existence of electrostatic interactions between chitosan nanoparticles and the elements N, P and K. The stability of the CS-PMAA colloidal suspension was higher with the addition of nitrogen and potassium than with the addition of phosphorus, due to the higher anion charge from the calcium phosphate than the anion charges from the potassium chloride and urea. The mean diameter increase of the CS-PMAA nanoparticles in suspension with the addition of different compounds indicated that the elements are being aggregated on the surface of the chitosan nanoparticles.
Resumo:
Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from Nα,Nε-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CSNPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy.
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products.
Resumo:
The cationic polysaccharide chitosan has been widely used for non-viral transfection in vitro and in vivo and has many advantages over other polycations. Chitosan is biocompatible and biodegradable and protects DNA against DNase degradation. However following administration the ChitosanDNA polyplexes must overcome a series of barriers before DNA is delivered to the cell nucleus. This paper describes the most important parameters involved in the chitosan-DNA interaction and their effects of on the condensation, shape, size and protection of DNA. Strategies developed for chitosanDNA polyplexes to avoid non-specific interaction with blood components and to overcome intracellular obstacles as the crossing of die cell membrane, endosomal escape and nuclear import are presented. © 2006 American Chemical Society.
Resumo:
There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays, articaine hydrochloride (ATC) is a local anesthetic widely used in dental procedures, but its side effects include paresthesia and nerve injury. Alginate/chitosan nanoparticles (AG/CSnano) can be used as carrier for drugs, overcoming the problems. The aim of this work was to evaluate the factors (Calcium/alginate [Ca2+:AG] and Chitosan/alginate [CS:AG] mass ratios) influence on the average size, polydispersity index, zeta potential and encapsulation efficiency of ATC. AG/CSnano containing ATC were prepared by ionic pregelation method. A three-level factorial design was carried out and the factors varied were Ca2+/AG mass ratio and CS/AG mass ratio. There were obtained nanoparticles with size range of 340–550 nm and polydispersity index between 0.2 and 0.5, zeta potential range –19 and –22 mV and encapsulation efficiency of ATC in AG/Csnano between 22 and 45%. According to the results, the average size, polydispersity index and encapsulation efficiency were significantly affected to the variation of Ca2+/AG and CS/AG mass ratio, but the zeta potential didn't change significantly with factor variations. The factorial design showed it was possible to identify formulations that presented better results for the parameters measured. The factor chosen for the suitable formulations was the encapsulation efficiency. Through this parameter, one formulation was chosen with highest encapsulation efficiency of ATC and presented good colloidal stability parameters aiming future clinical applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products.