996 resultados para chirp rate
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ultrashort light-matter interactions between a linear chirped pulse and a biased semiconductor thin film GaAs are investigated. Using different chirped pulses, the dependence of infrared spectra on chirp rate is demonstrated for a 5 fs pulse. It is found that the infrared spectra can be controlled by the linear chirp of the pulse. Furthermore, the infrared spectral intensity could be enhanced by two orders of magnitude via appropriately choosing values of the linear chirp rates. Our results suggest a possible scheme to control the infrared signal.
Resumo:
This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.
We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.
We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.
We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.
Resumo:
通过数值求解含时薛定谔方程,研究超短激光脉冲与三能级Λ型原子相互作用过程中影响原子电离态跃迁几率的几个因素,如:绝对相位,啁啾率等。研究结果表明激光绝对相位、啁啾率的大小是关系态跃迁几率的重要因素,通过调节超短激光脉冲的绝对相位和啁啾率,可以将态跃迁几率控制到较大的水平。本文研究结果为实验上对态跃迁几率的控制提供了相关理论基础。
Resumo:
为使星载激光高度计实现高空间分辨力、高距离精度,提出了联合采用调频光纤激光器和相干测距的方法。详细讨论了这种方法的实现方案,并对方案中的激光发射功率、望远镜口径以及脉冲宽度对距离精度及信噪比的影响进行数值模拟。对系统参量进行分析,得到了相关参量的关系和优化的参量。结果表明,当望远镜口径为400 mm时,啁啾调频速率为1 MHz/μs,脉冲时间宽度150~350μs,发射功率10 W左右时,基于相干测距的星载激光高度计可以实现距离精度小于15 cm的技术指标。
Resumo:
Objective: Sleep spindles have been suggested as surrogates of thalamo-cortical activity. Internal frequency modulation within a spindle's time frame has been demonstrated in healthy subjects, showing that spindles tend to decelerate their frequency before termination. We investigated internal frequency modulation of slow and fast spindles according to Obstructive Sleep Apnea (OSA) severity and brain topography. Methods: Seven non-OSA subjects and 21 patients with OSA contributed with 30 min of Non-REM sleep stage 2, subjected to a Matching pursuit procedure with Gabor chirplet functions for automatic detection of sleep spindles and quantification of sleep spindle internal frequency modulation (chirp rate). Results: Moderate OSA patients showed an inferior percentage of slow spindles with deceleration when compared to Mild and Non-OSA groups in frontal and parietal regions. In parietal regions, the percentage of slow spindles with deceleration was negatively correlated with global apnea-hypopnea index (r s = -0.519, p = 0.005). Discussion: Loss of physiological sleep spindle deceleration may either represent a disruption of thalamo-cortical loops generating spindle oscillations or some compensatory mechanism, an interesting venue for future research in the context of cognitive dysfunction in OSA. Significance: Quantification of internal frequency modulation (chirp rate) is proposed as a promising approach to advance description of sleep spindle dynamics in brain pathology. © 2013 International Federation of Clinical Neurophysiology.
Resumo:
This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification.
In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information.
In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data.
Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear.
We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.
Resumo:
This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.
Resumo:
We describe fabrication and characterisation of smooth low-loss waveguides in BK7 optical glass bymeans of direct femtosecond inscription with chirp-pulse oscillator, operating at 800 nm and 11 MHz repetition rate.
Resumo:
We describe fabrication and characterisation of smooth low-loss waveguides in BK7 optical glass bymeans of direct femtosecond inscription with chirp-pulse oscillator, operating at 800 nm and 11 MHz repetition rate.
Resumo:
In this paper, we demonstrate the possibility of reaching a quasi-stable nonlinear transmission regime with carrier pulses of 12.5 ps width in multi-channel 40 Gbit/s systems. The quasi-stable pulses that are presented in this work for the first time are not dispersion-managed solitons, and are indeed supported by a large normal span average dispersion and misbalanced optical amplification, and representing a new type of nonlinear carrier.
Resumo:
An ultra-broadband Ti:sapphire regenerative amplifier based on spatially dispersed amplification is demonstrated experimentally. Departing from previous reports, a new design of the cavity gets the amplified pulse free from spatial chirp. Utilizing this new regenerative amplifier, chirped pulses with bandwidth (FWHM) of about 80 nm are obtained, and the bandwidth is limited only by that of the incident seed pulses.
Resumo:
A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.
Resumo:
The letter presents a technique for Nth-order differentiation of periodic pulse train, which can simultaneously multiply the input repetition rate. This approach uses a single linearly chirped apodized fiber Bragg grating, which grating profile is designed to map the spectral response of the Nth-order differentiator, and the chirp introduces a dispersion that, besides space-to-frequency mapping, it also causes a temporal Talbot effect.