953 resultados para causal effects
Resumo:
Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
Resumo:
This paper deals with causal effect estimation strategies in highly heterogeneous empirical settings such as entrepreneurship. We argue that the clearer used of modern tools developed to deal with the estimation of causal effects in combination with our analysis of different sources of heterogeneity in entrepreneurship can lead to entrepreneurship with higher internal validity. We specifically lend support from the counterfactual logic and modern research of estimation strategies for causal effect estimation.
Resumo:
This thesis is composed of an introductory chapter and four applications each of them constituting an own chapter. The common element underlying each of the chapters is the econometric methodology. The applications rely mostly on the leading econometric techniques related to estimation of causal effects. The first chapter introduces the econometric techniques that are employed in the remaining chapters. Chapter 2 studies the effects of shocking news on student performance. It exploits the fact that the school shooting in Kauhajoki in 2008 coincided with the matriculation examination period of that fall. It shows that the performance of men declined due to the news of the school shooting. For women the similar pattern remains unobserved. Chapter 3 studies the effects of minimum wage on employment by employing the original Card and Krueger (1994; CK) and Neumark and Wascher (2000; NW) data together with the changes-in-changes (CIC) estimator. As the main result it shows that the employment effect of an increase in the minimum wage is positive for small fast-food restaurants and negative for big fast-food restaurants. Therefore, it shows that the controversial positive employment effect reported by CK is overturned for big fast-food restaurants and that the NW data are shown, in contrast to their original results, to provide support for the positive employment effect. Chapter 4 employs the state-specific U.S. data (collected by Cohen and Einav [2003; CE]) on traffic fatalities to re-evaluate the effects of seat belt laws on the traffic fatalities by using the CIC estimator. It confirms the CE results that on the average an implementation of a mandatory seat belt law results in an increase in the seat belt usage rate and a decrease in the total fatality rate. In contrast to CE, it also finds evidence on compensating-behavior theory, which is observed especially in the states by the border of the U.S. Chapter 5 studies the life cycle consumption in Finland, with the special interest laid on the baby boomers and the older households. It shows that the baby boomers smooth their consumption over the life cycle more than other generations. It also shows that the old households smoothed their life cycle consumption more as a result of the recession in the 1990s, compared to young households.
Resumo:
We consider methods for estimating causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, simple comparison of treated and control outcomes will not generally yield valid estimates of casual effects. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based onsome strong assumptions, which are not directly testable. In this paper, we present an alternative modeling approachto draw causal inference by using share random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but it is also less sensitive to model misspecifications, which we consider, than the existing methods.
Resumo:
Secure property rights are considered a key determinant of economic development. However, the evaluation of the causal effects of land titling is a difficult task. The Brazilian government through a program called "Papel Passado" has issued titles, since 2004, to over 85,000 families and has the goal to reach 750,000. Furthermore, another topic in Public Policy that is crucial to developing economies is income generation and child labor force participation. Particularly, in Brazil, about 5.4 million children and teenagers between 5 and 17 years old are still working. This thesis examines the direct impact of securing a property title on income and child labor force participation. In order to isolate the causal role of ownership security, this study uses a comparison between two close and very similar communities in the City of Osasco case (a town with 650,000 people in the São Paulo metropolitan area). One of them, Jardim Canaã, was fortunated to receive the titles in 2007, the other, Jardim DR, given fiscal constraints, only will be part of the program schedule in 2012, and for that reason became the control group. Also, this thesis also aims to test if there is any relationship between land title and happiness. The estimates suggest that titling results in a substantial decrease of child labor force participation, increase of income and happiness for the families that received the title compared to the others.
Resumo:
The affected sib/relative pair (ASP/ARP) design is often used with covariates to find genes that can cause a disease in pathways other than through those covariates. However, such "covariates" can themselves have genetic determinants, and the validity of existing methods has so far only been argued under implicit assumptions. We propose an explicit causal formulation of the problem using potential outcomes and principal stratification. The general role of this formulation is to identify and separate the meaning of the different assumptions that can provide valid causal inference in linkage analysis. This separation helps to (a) develop better methods under explicit assumptions, and (b) show the different ways in which these assumptions can fail, which is necessary for developing further specific designs to test these assumptions and confirm or improve the inference. Using this formulation in the specific problem above, we show that, when the "covariate" (e.g., addiction to smoking) also has genetic determinants, then existing methods, including those previously thought as valid, can declare linkage between the disease and marker loci even when no such linkage exists. We also introduce design strategies to address the problem.
Resumo:
Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.
Resumo:
Using recent data from the Chinese manufacturing industry and the generalised propensity score, this paper establishes economically significant causal effects of foreign acquisition on domestic and export markets dynamics.
Resumo:
This paper considers the analysis of data from randomized trials which offer a sequence of interventions and suffer from a variety of problems in implementation. In experiments that provide treatment in multiple periods (T>1), subjects have up to 2^{T}-1 counterfactual outcomes to be estimated to determine the full sequence of causal effects from the study. Traditional program evaluation and non-experimental estimators are unable to recover parameters of interest to policy makers in this setting, particularly if there is non-ignorable attrition. We examine these issues in the context of Tennessee's highly influential randomized class size study, Project STAR. We demonstrate how a researcher can estimate the full sequence of dynamic treatment effects using a sequential difference in difference strategy that accounts for attrition due to observables using inverse probability weighting M-estimators. These estimates allow us to recover the structural parameters of the small class effects in the underlying education production function and construct dynamic average treatment effects. We present a complete and different picture of the effectiveness of reduced class size and find that accounting for both attrition due to observables and selection due to unobservable is crucial and necessary with data from Project STAR
Resumo:
This paper considers identification of treatment effects when the outcome variables and covari-ates are not observed in the same data sets. Ecological inference models, where aggregate out-come information is combined with individual demographic information, are a common example of these situations. In this context, the counterfactual distributions and the treatment effects are not point identified. However, recent results provide bounds to partially identify causal effects. Unlike previous works, this paper adopts the selection on unobservables assumption, which means that randomization of treatment assignments is not achieved until time fixed unobserved heterogeneity is controlled for. Panel data models linear in the unobserved components are con-sidered to achieve identification. To assess the performance of these bounds, this paper provides a simulation exercise.
Resumo:
An ongoing challenge in behavioral economics is to understand the variations observed in risk attitudes as a function of their environmental context. Of particular interest is the effect of wealth on risk attitudes. The research in this area has however faced two constraints: the difficulty to study the causal effects of large changes in wealth, and the causal effects of losses on risk behavior. The present paper address this double limitation by providing evidence of the variation of risk attitude after large losses using a natural disaster (Brisbane floods) as the setting for a natural experiment.