974 resultados para catabolism of proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of fundamental knowledge on the biological processes associated with wound healing represents a significant challenge. Understanding the biochemical changes that occur within a chronic wound could provide insights into the wound environment and enable more effective wound management. We report on the stability of wound fluid samples under various conditions and describe a high-throughput approach to investigate the altered biochemical state within wound samples collected from various types of chronic, ulcerated wounds. Furthermore, we discuss the viability of this approach in the early stages of wound sample protein and metabolite profiling and subsequent biomarker discovery. This approach will facilitate the detection of factors that may correlate with wound severity and/or could be used to monitor the response to a particular treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a machine learning model that predicts a structural disruption score from a protein s primary structure. SCHEMA was introduced by Frances Arnold and colleagues as a method for determining putative recombination sites of a protein on the basis of the full (PDB) description of its structure. The present method provides an alternative to SCHEMA that is able to determine the same score from sequence data only. Circumventing the need for resolving the full structure enables the exploration of yet unresolved and even hypothetical sequences for protein design efforts. Deriving the SCHEMA score from a primary structure is achieved using a two step approach: first predicting a secondary structure from the sequence and then predicting the SCHEMA score from the predicted secondary structure. The correlation coefficient for the prediction is 0.88 and indicates the feasibility of replacing SCHEMA with little loss of precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Human saliva mirrors the body's health and can be collected non-invasively, does not require specialized skills and is suitable for large population based screening programs. The aims were twofold: to evaluate the suitability of commercially available saliva collection devices for quantifying proteins present in saliva and to provide levels for C-reactive protein (CRP), myoglobin, and immunoglobin E (IgE) in saliva of healthy individuals as a baseline for future studies. Methods: Saliva was collected from healthy volunteers (n = 17, ages 18-33 years). The following collection methods were evaluated: drool; Salimetrics (R) Oral Swab (SOS); Salivette (R) Cotton and Synthetic (Sarstedt) and Greiner Bio-One Saliva Collection System (GBO SCS (R)). We used AlphaLISA (R) assays to measure CRP, IgE and myoglobin levels in human saliva. Results: Significant (p<0.05) differences in the salivary flow rates were observed based on the method of collection, Le. salivary flow rates were significantly lower (p<0.05) in unstimulated saliva (Le. drool and SOS), when compared with mechanically stimulated methods (p<0.05) (Salivette (R) Cotton and Synthetic) and acid stimulated method (p<0.05) (SCS (R)). Saliva collected using SOS yielded significantly (p<0.05) lower concentrations of myoglobin and CRP, whilst, saliva collected using the Salivette (R) Cotton and Synthetic swab yielded significantly (p<0.05) lower myoglobin and IgE concentrations respectively. Conclusions: The results demonstrated significantly relevant differences in analyte levels based on the collection method. Significant differences in the salivary flow rates were also observed depending on the saliva collection method. The data provide preliminary baseline values for salivary CRP, myoglobin, and IgE levels in healthy participants and based on the collection method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of a protein can be partially determined by the information contained in its amino acid sequence. It can be assumed that proteins with similar amino acid sequences normally have closer functions. Hence analysing the similarity of proteins has become one of the most important areas of protein study. In this work, a layered comparison method is used to analyze the similarity of proteins. It is based on the empirical mode decomposition (EMD) method, and protein sequences are characterized by the intrinsic mode functions (IMFs). The similarity of proteins is studied with a new cross-correlation formula. It seems that the EMD method can be used to detect the functional relationship of two proteins. This kind of similarity method is a complement of traditional sequence similarity approaches which focus on the alignment of amino acids