729 resultados para case-based learning
Resumo:
This article presents preliminary research from an instructional design perspective on the design of the case method as an integral part of pedagogy and technology. Key features and benefitsusing this teaching and learning strategy in a Virtual Teaching and Learning Environment(VTLE) are identified, taking into account the requirements of the European Higher Education Area (EHEA) for a competence-based curricula design. The implications of these findings for alearning object approach exploring the possibilities of learning personalization, reusability and interoperability trough IMS LD, are also analyzed.
Resumo:
Engineering Education includes not only teaching theoretical fundamental concepts but also its verification during practical lessons in laboratories. The usual strategies to carry out this action are frequently based on Problem Based Learning, starting from a given state and proceeding forward to a target state. The possibility or the effectiveness of this procedure depends on previous states and if the present state was caused or resulted from earlier ones. This often happens in engineering education when the achieved results do not match the desired ones, e.g. when programming code is being developed or when the cause of the wrong behavior of an electronic circuit is being identified. It is thus important to also prepare students to proceed in the reverse way, i.e. given a start state generate the explanation or even the principles that underlie it. Later on, this sort of skills will be important. For instance, to a doctor making a patient?s story or to an engineer discovering the source of a malfunction. This learning methodology presents pedagogical advantages besides the enhanced preparation of students to their future work. The work presented on his document describes an automation project developed by a group of students in an engineering polytechnic school laboratory. The main objective was to improve the performance of a Braille machine. However, in a scenario of Reverse Problem-Based learning, students had first to discover and characterize the entire machine's function before being allowed (and being able) to propose a solution for the existing problem.
Resumo:
Identificación y caracterización del problema: El problema que guía este proyecto, pretende dar respuesta a interrogantes tales como: ¿De qué modo el tipo de actividades que se diseñan, se constituyen en dispositivos posibilitadores de la comprensión de los temas propios de cada asignatura, por parte de los alumnos? A partir de esta pregunta, surge la siguiente: Al momento de resolver las actividades, ¿qué estrategias cognitivas ponen en juego los estudiantes? y ¿cuáles de ellas favorecen procesos de construcción del conocimiento? Hipótesis: - Las asignaturas cuyas actividades están elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, propician aprendizajes significativos por parte de los estudiantes. - Las actividades elaboradas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos requieren de procesos cognitivos más complejos que los que se implementan en las de tipo tradicional. Objetivo: - Identificar el impacto que tienen las actividades de aprendizaje de tipo tradicional y las elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, en el aprendizaje de los alumnos. Materiales y Métodos: a) Análisis de las actividades de aprendizaje del primero y segundo año de la carrera de Abogacía, bajo lamodalidad a Distancia. b) Entrevistas tanto a docentes contenidistas como así también a los tutores. c) Encuestas y entrevistas a los alumnos. Resultados esperados: Se pretende confirmar que las actividades de aprendizaje, diseñadas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos, promueven aprendizajes significativos en los alumnos. Importancia del proyecto y pertinencia: La relevancia del presente proyecto se podría identificar a través de dos grandes variables vinculadas entre sí: la relacionada con el dispositivo didáctico (estrategias implementadas por los alumnos) y la referida a lo institucional (carácter innovador de la propuesta de enseñanza y posibilidad de extenderla a otras cátedras). El presente proyecto pretende implementar mejoras en el diseño de las actividades de aprendizaje, a fin de promover en los alumnos la generación de ideas y soluciones responsables y el desarrollo de su capacidad analítica y reflexiva.
Resumo:
My research permitted me to reexamine my recent evaluations of the Leaf Project given to the Foundation Year students during the fall semester of 1997. My personal description of the drawing curriculum formed part of the matrix of the Foundation Core Studies at the Ontario College of Art and Design. Research was based on the random selection of 1 8 students distributed over six of my teaching groups. The entire process included a representation of all grade levels. The intent of the research was to provide a pattern of alternative insights that could provide a more meaningful method of evaluation for visual learners in an art education setting. Visual methods of learning are indeed complex and involve the interplay of many sensory modalities of input. Using a qualitative method of research analysis, a series of queries were proposed into a structured matrix grid for seeking out possible and emerging patterns of learning. The grid provided for interrelated visual and linguistic analysis with emphasis in reflection and interconnectedness. Sensory-based modes of learning are currently being studied and discussed amongst educators as alternative approaches to learning. As patterns emerged from the research, it became apparent that a paradigm for evaluation would have to be a progressive profile of the learning that would take into account many of the different and evolving learning processes of the individual. A broader review of the student's entire development within the Foundation Year Program would have to have a shared evaluation through a cross section of representative faculty in the program. The results from the research were never intended to be conclusive. We realized from the start that sensory-based learning is a difficult process to evaluate from traditional standards used in education. The potential of such a process of inquiry permits the researcher to ask for a set of queries that might provide for a deeper form of evaluation unique to the students and their related learning environment. Only in this context can qualitative methods be used to profile their learning experiences in an expressive and meaningful manner.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
The current trend among many universities is to increase the number of courses available online. However, there are fundamental problems in transferring traditional education courses to virtual formats. Delivering current curricula in an online format does not assist in overcoming the negative effects on student motivation which are inherent in providing information passively. Using problem-based learning (PBL) online is a method by which computers can become a tool to encourage active learning among students. The delivery of curricula via goal-based scenarios allows students to learn at different rates and can successfully shift online learning from memorization to discovery. This paper reports on a Web-based e-health course that has been delivered via PBL for the past 12 months. Thirty distance-learning students undertook postgraduate courses in e-health delivered via the Internet (asynchronous communication). Data collected via online student surveys indicated that the PBL format was both flexible and interesting. PBL has the potential to increase the quality of the educational experience of students in online environments.
Resumo:
This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
Title of Thesis: Thesis directed by: ABSTRACT EXAMINING THE IMPLEMENTATION CHALLENGES OF PROJECT-BASED LEARNING: A CASE STUDY Stefan Frederick Brooks, Master of Education, 2016 Professor and Chair Francine Hultgren Teaching and Learning, Policy and Leadership Department Project-based learning (PjBL) is a common instructional strategy to consider for educators, scholars, and advocates who focus on education reform. Previous research on PjBL has focused on its effectiveness, but a limited amount of research exists on the implementation challenges. This exploratory case study examines an attempted project- based learning implementation in one chemistry classroom at a private school that fully supports PjBL for most subjects with limited use in mathematics. During the course of the study, the teacher used a modified version of PjBL. Specifically, he implemented some of the elements of PjBL, such as a driving theme and a public presentation of projects, with the support of traditional instructional methods due to the context of the classroom. The findings of this study emphasize the teacher’s experience with implementing some of the PjBL components and how the inherent implementation challenges affected his practice.
Resumo:
A growing body of research in higher education suggests that teachers should move away from traditional lecturing towards more active and student-focus education approaches. Several classroom techniques are available to engage students and achieve more effective teaching and better learning experiences. The purpose of this paper is to share an example of how two of them – case-based teaching, and the use of response technologies – were implemented into a graduate-level food science course. The paper focuses in particular on teaching sensory science and sensometrics, including several concrete examples used during the course, and discussing in each case some of the observed outcomes. Overall, it was observed that the particular initiatives were effective in engaging student participation and promoting a more active way of learning. Case-base teaching provided students with the opportunity to apply their knowledge and their analytical skills to complex, real-life scenarios relevant to the subject matter. The use of audience response systems further facilitated class discussion, and was extremely well received by the students, providing a more enjoyable classroom experience.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.