982 resultados para canonical redundancy analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in the control of growth in chickens are too complex to be explained only under univariate analysis because all related traits are biologically correlated. Therefore, we evaluated broiler chicken performance under a multivariate approach, using the canonical discriminant analysis. A total of 1920 chicks from eight treatments, defined as the combination of four broiler chicken strains (Arbor Acres, AgRoss 308, Cobb 500 and RX) from both sexes, were housed in 48 pens. Average feed intake, average live weight, feed conversion and carcass, breast and leg weights were obtained for days 1 to 42. Canonical discriminant analysis was implemented by SAS((R)) CANDISC procedure and differences between treatments were obtained by the F-test (P < 0.05) over the squared Mahalanobis` distances. Multivariate performance from all treatments could be easily visualised because one graph was obtained from two first canonical variables, which explained 96.49% of total variation, using a SAS((R)) CONELIP macro. A clear distinction between sexes was found, where males were better than females. Also between strains, Arbor Acres, AgRoss 308 and Cobb 500 (commercial) were better than RX (experimental), Evaluation of broiler chicken performance was facilitated by the fact that the six original traits were reduced to only two canonical variables. Average live weight and carcass weight (first canonical variable) were the most important traits to discriminate treatments. The contrast between average feed intake and average live weight plus feed conversion (second canonical variable) were used to classify them. We suggest analysing performance data sets using canonical discriminant analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive functioning (EF), which is considered to govern complex cognition, and verbal memory (VM) are constructs assumed to be related. However, it is not known the magnitude of the association between EF and VM, and how sociodemographic and psychological factors may affect this relationship, including in normal aging. In this study, we assessed different EF and VM parameters, via a battery of neurocognitive/psychological tests, and performed a Canonical Correlation Analysis (CCA) to explore the connection between these constructs, in a sample of middle- aged and older healthy individuals without cognitive impairment (N = 563, 50+ years of age). The analysis revealed a positive and moderate association between EF and VM independently of gender, age, education, global cognitive performance level, and mood. These results confirm that EF presents a significant association with VM performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of simple and multiple correspondence analysis is well-established in socialscience research for understanding relationships between two or more categorical variables.By contrast, canonical correspondence analysis, which is a correspondence analysis with linearrestrictions on the solution, has become one of the most popular multivariate techniques inecological research. Multivariate ecological data typically consist of frequencies of observedspecies across a set of sampling locations, as well as a set of observed environmental variablesat the same locations. In this context the principal dimensions of the biological variables aresought in a space that is constrained to be related to the environmental variables. Thisrestricted form of correspondence analysis has many uses in social science research as well,as is demonstrated in this paper. We first illustrate the result that canonical correspondenceanalysis of an indicator matrix, restricted to be related an external categorical variable, reducesto a simple correspondence analysis of a set of concatenated (or stacked ) tables. Then weshow how canonical correspondence analysis can be used to focus on, or partial out, aparticular set of response categories in sample survey data. For example, the method can beused to partial out the influence of missing responses, which usually dominate the results of amultiple correspondence analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Method is offered that makes it possible to apply generalized canonicalcorrelations analysis (CANCOR) to two or more matrices of different row and column order. The new method optimizes the generalized canonical correlationanalysis objective by considering only the observed values. This is achieved byemploying selection matrices. We present and discuss fit measures to assessthe quality of the solutions. In a simulation study we assess the performance of our new method and compare it to an existing procedure called GENCOM,proposed by Green and Carroll. We find that our new method outperforms the GENCOM algorithm both with respect to model fit and recovery of the truestructure. Moreover, as our new method does not require any type of iteration itis easier to implement and requires less computation. We illustrate the methodby means of an example concerning the relative positions of the political parties inthe Netherlands based on provincial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pattern of correlation between two sets of variables can be tested using canonical variate analysis (CVA). CVA, like principal components analysis (PCA) and factor analysis (FA) (Statnote 27, Hilton & Armstrong, 2011b), is a multivariate analysis Essentially, as in PCA/FA, the objective is to determine whether the correlations between two sets of variables can be explained by a smaller number of ‘axes of correlation’ or ‘canonical roots’.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les avancées en biotechnologie ont permis l’identification d’un grand nombre de mécanismes moléculaires, soulignant également la complexité de la régulation génique. Néanmoins, avoir une vision globale de l’homéostasie cellulaire, nous est pour l’instant inaccessible et nous ne sommes en mesure que d’en avoir qu’une vue fractionnée. Étant donné l’avancement des connaissances des dysfonctionnements moléculaires observés dans les maladies génétiques telles que la fibrose kystique, il est encore difficile de produire des thérapies efficaces. La fibrose kystique est causée par la mutation de gène CFTR (cystic fibrosis transmembrane conductance regulator), qui code pour un canal chlorique transmembranaire. La mutation la plus fréquente (ΔF508) induit un repliement incorrect de la protéine et sa rétention dans le réticulum endoplasmique. L’absence de CFTR fonctionnel à la membrane a un impact sur l’homéostasie ionique et sur l’hydratation de la muqueuse respiratoire. Ceci a pour conséquence un défaut dans la clairance mucocilliaire, induisant infection chronique et inflammation excessive, deux facteurs fondamentaux de la physiopathologie. L’inflammation joue un rôle très important dans l’évolution de la maladie et malgré le nombre important d’études sur le sujet, la régulation du processus inflammatoire est encore très mal comprise et la place qu’y occupe le CFTR n’est pas établie. Toutefois, plusieurs autres facteurs, tels que le stress oxydatif participent à la physiopathologie de la maladie, et considérer leurs impacts est important pour permettre une vision globale des acteurs impliqués. Dans notre étude, nous exploitons la technologie des puces à ADN, pour évaluer l’état transcriptionnel d’une cellule épithéliale pulmonaire humaine fibro-kystique. Dans un premier temps, l’analyse de notre expérience identifie 128 gènes inflammatoires sur-exprimés dans les cellules FK par rapport aux cellules non FK où apparaissent plusieurs familles de gènes inflammatoires comme les cytokines ou les calgranulines. L’analyse de la littérature et des annotations suggèrent que la modulation de ces transcripts dépend de la cascade de NF-κB et/ou des voies de signalisation associées aux interférons (IFN). En outre, leurs modulations pourraient être associées à des modifications épigénétiques de leurs loci chromosomiques. Dans un second temps, nous étudions l’activité transcriptionnelle d’une cellule épithéliale pulmonaire humaine FK en présence de DMNQ, une molécule cytotoxique. Notre but est d’identifier les processus biologiques perturbés par la mutation du gène CFTR en présence du stress oxydatif. Fondé sur une analyse canonique de redondance, nous identifions 60 gènes associés à la mort cellulaire et leur variance, observée dans notre expérience, s’explique par un effet conjoint de la mutation et du stress oxydatif. La mesure de l’activité des caspases 3/7, des effecteurs de l’apoptose (la mort cellulaire programmée), montre que les cellules porteuses de la mutation ΔF508, dans des conditions de stress oxydatif, seraient moins apoptotiques que les cellules saines. Nos données transcriptomiques suggèrent que la sous-activité de la cascade des MAPK et la sur-expression des gènes anti-apoptotiques pourraient être impliquées dans le déséquilibre de la balance apoptotique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods: Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results: Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion: Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively. © 2013 Oliveira Junior et al.; licensee BioMed Central Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Correspondence analysis, when used to visualize relationships in a table of counts(for example, abundance data in ecology), has been frequently criticized as being too sensitiveto objects (for example, species) that occur with very low frequency or in very few samples. Inthis statistical report we show that this criticism is generally unfounded. We demonstrate this inseveral data sets by calculating the actual contributions of rare objects to the results ofcorrespondence analysis and canonical correspondence analysis, both to the determination ofthe principal axes and to the chi-square distance. It is a fact that rare objects are oftenpositioned as outliers in correspondence analysis maps, which gives the impression that theyare highly influential, but their low weight offsets their distant positions and reduces their effecton the results. An alternative scaling of the correspondence analysis solution, the contributionbiplot, is proposed as a way of mapping the results in order to avoid the problem of outlying andlow contributing rare objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the State of Rio Grande do Sul, the municipality of Pelotas is responsible for 90 % of peach production due to its suitable climate and soil conditions. However, there is the need for new studies that aim at improved fruit quality and increased yield. The aim of this study was to evaluate the relationship that exists between soil physical properties and properties in the peach plant in the years 2010 and 2011 by the technique of multivariate canonical correlation. The experiment was conducted in a peach orchard located in the municipality of Morro Redondo, RS, Brazil, where an experimental grid of 101 plants was established. In a trench dug beside each one of the 101 plants, soil samples were collected to determine silt, clay, and sand contents, soil density, total porosity, macroporosity, microporosity, and volumetric water content in the 0.00-0.10 and 0.10-0.20 m layers, as well as the depth of the A horizon. In each plant and in each year, the following properties were assessed: trunk diameter, fruit size and number of fruits per plant, average weight of the fruit per plant, fruit pulp firmness, Brix content, and yield from the orchard. Exploratory analysis of the data was undertaken by descriptive statistics, and the relationships between the physical properties of the soil and of the plant were assessed by canonical correlation analysis. The results showed that the clay and microporosity variables were those that exhibited the highest coefficients of canonical cross-loading with the plant properties in the soil layers assessed, and that the variable of mean weight of the fruit per plant was that which had the highest coefficients of canonical loading within the plant group for the two years assessed.