982 resultados para cálculos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Descrevemos uma análise espectral das equações de ordenadas discretas (SN)a um grupo e a dois grupos de energia, onde seguimos uma analogia com o método de Case. Utilizamos, neste método, quadraturas angulares diferentes no combustível (NC) e no moderador (NM), onde em geral assumimos que NC > NM . Condições de continuidade especiais que acoplam os fluxos angulares que emergem do combustível (moderador) e incidem no moderador (combustível), foram utilizadas com base na equivalência entre as equações SN e PN-1, o que caracteriza a propriedade híbrida do modelo proposto. Sendo um método híbrido direto, utilizamos as NC + NM equações lineares e algébricas constituídas pelas (NC + NM)/2 condições de contorno reflexivas e (NC + NM)/2 condições de continuidade para determinarmos as NC + NM constantes. Com essas constantes podemos calcular os valores dos fluxos angulares e dos fluxos escalares em qualquer ponto do domínio. Apresentamos resultados numéricos para ilustrar a eficiência e a precisão do método proposto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho apresenta a aplicação das fórmulas de Vincenty nos cálculos das correções do terreno e do efeito indireto, que desempenham papel relevante na construção de cartas geoidais. Implementa-se um programa de processamento que realiza a integração numérica sobre o modelo digital do terreno, discretizado em células triangulares de Delaunay. O sistema foi desenvolvido com a linguagem de programação FORTRAN, para a execução de intensos algoritmos numéricos usando compiladores livres e robustos. Para o cálculo do efeito indireto, considera-se a redução gravimétrica efetuada com base no segundo método de condensação de Helmert, face ao pequeno valor de efeito indireto no cálculo do geóide, em função da mudança que este produz no potencial da gravidade devido ao deslocamento da massa topográfica. Utiliza-se, o sistema geodésico SIRGAS 2000 como sistema de referência para o cômputo das correções. Simplificando o exame dos resultados alcançados, distingue-se o processamento e desenvolvimento do trabalho em etapas como a escolha de ferramentas geodésicas para máxima precisão dos resultados, elaboração de subrotinas e comparação de resultados com cálculos anteriores. Os resultados encontrados foram de geração sadia e satisfatória e podem ser perfeitamente empregados no cálculo do geóide em qualquer área do globo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Como eventos de fissão induzida por nêutrons não ocorrem nas regiões nãomultiplicativas de reatores nucleares, e.g., moderador, refletor, e meios estruturais, essas regiões não geram potência e a eficiência computacional dos cálculos globais de reatores nucleares pode portanto ser aumentada eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas em torno do núcleo ativo. É discutida nesta dissertação a eficiência computacional de condições de contorno aproximadas tipo albedo na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. Albedo, palavra de origem latina para alvura, foi originalmente definido como a fração da luz incidente que é refletida difusamente por uma superfície. Esta palavra latina permaneceu como o termo científico usual em astronomia e nesta dissertação este conceito é estendido para reflexão de nêutrons. Este albedo SN nãoconvencional substitui aproximadamente a região refletora em torno do núcleo ativo do reator, pois os termos de fuga transversal são desprezados no interior do refletor. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta dissertação, são exatas. Por eficiência computacional entende-se analisar a precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos para dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Muchas de las piezas de vehículos trabajan bajo tensiones aleatorias, y por ello, es necesario tener en cuenta la fatiga por daño acumulativo de los materiales en el diseño. Sin embargo, no hay ningún método de cálculo específico en este ámbito, sino que se disponen de diferentes posibles elecciones, situación que incurre en la necesidad de una comparación entre ellos para tener cierto criterio de selección. Aportar ese criterio es la razón de ser de este informe, que se intentará corroborar con un análisis de una pieza de un tren de aterrizaje de una aeronave, bien por el tipo de cargas al que está sujeto cómo por la creciente importancia del sector aeronáutico en la industria en el cual el diseño tiene especial interés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um método de Matriz Resposta (MR) é descrito para gerar soluções numéricas livres de erros de truncamento espacial para problemas multigrupo de transporte de nêutrons com fonte fixa e em geometria unidimensional na formulação de ordenadas discretas (SN). Portanto, o método multigrupo MR com esquema iterativo de inversão nodal parcial (NBI) converge valores numéricos para os fluxos angulares nas fronteiras das regiões que coincidem com os valores da solução analítica das equações multigrupo SN, afora os erros de arredondamento da aritmética finita computacional. É também desenvolvido um esquema numérico de reconstrução espacial, que fornece a saída para os fluxos escalares de nêutrons em cada grupo de energia em um intervalo qualquer do domínio definido pelo usuário, com um passo de avanço também escolhido pelo usuário. Resultados numéricos são apresentados para ilustrar a precisão do presente método em cálculos de malha grossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A urolitíase é um problema de escala mundial, que ocorre em todas as regiões, culturas e grupos raciais. A incidência desta doença vem aumentando ao redor do mundo e dados mostram que no Brasil estima-se que são afetados 5% da população com uma taxa de recorrência de 2,5%. Conhecer a composição mineral e estrutura interna dos cálculos é um passo importante para tentar entender melhor a fisiopatologia desta doença. Quatro cálculos urinários infecciosos, íntegros de grande volume (diâmetro maior que 20 mm), sendo dois provenientes da bexiga e dois de rins, obtidos cirurgicamente no setor de urologia do Hospital Universitário Pedro Ernesto (HUPE/UERJ) foram analisados usando microtomografia (μCT) e difração de raios X por policristais (DRXP). As imagens microtomográficas foram obtidas usando tubo de raios X microfoco na estação TomoLab e radiação síncrotron (SR-μCT) na linha de Física Médica, ambos no Laboratório Síncrotron Elettra, Trieste, Itália. As medidas de DRXP foram realizadas na linha de Difração de Raios X do Laboratório Nacional de luz Síncrotron, Campinas, Brasil. Para os cálculos de bexiga foram encontradas quatro fases cristalinas: estruvita (STV), oxalato mono (COM) e dihidratado (COD) e hidroxiapatita (HAp). Nos cálculos renais foram encontrados STV e HAp, sendo predominante a primeira fase cristalina. A quantidade de material amorfo (não-cristalino) foi maior que 60% da composição das amostras. A técnica convencional utilizada foi eficaz para análise dos cálculos urinários inteiros e possibilitou a visualização de estruturas internas sem interferência de procedimentos prévios de preparação da amostra. As análises de DRXP com fonte síncrotron aliadas ao método Rietveld foram determinantes para identificação e quantificação dos minerais presentes nas varias camadas das amostras. Pode-se constatar a complementaridade entre a μCT e a DRXP para caracterização microestrutural e mineralógica de cálculos urinários humanos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os eventos de fissão nuclear, resultados da interação dos nêutrons com os núcleos dos átomos do meio hospedeiro multiplicativo, não estão presentes em algumas regiões dos reatores nucleares, e.g., moderador, refletor, e meios estruturais. Nesses domínios espaciais não há geração de potência nuclear térmica e, além disso, comprometem a eficiência computacional dos cálculos globais de reatores nucleares. Propomos nesta tese uma estratégia visando a aumentar a eficiência computacional dessas simulações eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas (baffle e refletor) em torno do núcleo ativo. Apresentamos algumas modelagens e discutimos a eficiência da aplicação dessas condições de contorno aproximadas tipo albedo para uma e duas regiões nãomultiplicativas, na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. A denominação Albedo, palavra de origem latina para alvura, foi originalmente definida como a fração da luz incidente que é refletida difusamente por uma superfície. Esta denominação latina permaneceu como o termo científico usual em astronomia e, nesta tese, este conceito é estendido para reflexão de nêutrons. Estas condições de contorno tipo albedo SN não-convencional substituem aproximadamente as regiões de baffle e refletor no em torno do núcleo ativo do reator, desprezando os termos de fuga transversal no interior dessas regiões. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta tese, são exatas. Por eficiência computacional entende-se a análise da precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos considerando dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Comentarios sobre problemas anteriores. Comentarios de nuestros lectores. Los Torneos de Problemas. Nueva propuesta de problemas de cálculo aritmético para resolver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La idea de este trabajo es presentar los instrumentos que se utilizaban principalmente en la Ingeniería y las Carreras de Ciencias, para realizar los cálculos, antes de la época de la Informática e inclusive antes de la calculadora científica. Con la Regla de Cálculo a los estudiantes se les enseñaban a realizar los cálculos desde el Bachillerato, en su formación Profesional, utilizando la regla de Cálculo, y ya siendo Profesionistas con el mencionado instrumento se diseñaron: puentes, edificios, embarcaciones, aviones, vehículos y tantos otros productos de la ciencia y la tecnología, así como los primeros vehículos espaciales. Para la construcción de la Regla de Cálculo se utilizaron los logaritmos y las escalas logarítmicas, para manejar éste instrumento se aplican las propiedades de los logaritmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debido a que el 12% de la población tendrá un cálculo en uréter hacia la mitad de su vida y a que las tasas de recurrencia en los que ya lo presentan son del 50% es necesario estudiar esta patología para aproximarse a un manejo adecuado en el servicio de urgencias. La literatura identifica un conjunto de factores que pueden contribuir a un cambio en el manejo médico. Objetivo: El objetivo de este estudio fue determinar los factores demográficos y clínicos asociados a manejo hospitalario en los pacientes con diagnóstico de cálculo ureteral menor de 10 mm. Métodos: Se diseñó un estudio de casos y controles no emparejados. Un caso fue definido como un paciente de 18 o más años con diagnóstico de urolitiasis con cálculo menor a 10 mm realizado por urotac que consultó (por primera vez para ese episodio) al servicio de urgencias de la Fundación Santa Fe de Bogotá entre el 1 de marzo de 2007 y 30 de abril de 2012. Se indagaron factores como edad, sexo, tamaño y localización del cálculo, respuesta a los analgésicos, evidencia de obstrucción e infección urinaria, además de otros antecedentes medicamentosos y clínicos. Se utilizó regresión logística no condicional bivariada y multivariada para evaluar la asociación entre tipo de manejo (hospitalario o ambulatorio) y las variables recolectadas, calculando odds ratio (OR) e intervalos de confianza al 95% (IC95%). Resultados: El riesgo de hospitalización se incrementó con: 1. La localización del cálculo en tercio superior o medio (OR=1.49; IC95%: 0.751-2.966) al comparar con el inferior, 2. El aumento del tamaño del cálculo (OR=1.49; IC95%: 0.751-2.966, por cada milímetro de incremento), y 3: Por la evidencia de obstrucción o infección urinaria y elevación de azoados. Por el contrario, hubo menos riesgo de hospitalización en aquellos pacientes con una respuesta analgésica apropiada en urgencias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el del autor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caracterizar el período de transición entre las etapas de enseñanza matemática: elemental (la que transcurre en las etapas de enseñanza obligatoria) y avanzada (la que tiene lugar en el ámbito universitario). Buscar elementos que influyan favorablemente en el aprovechamiento por parte de los estudiantes del período de transición. 47 alumnos de 6õ de secundaria y 5 estudiantes de primer año de la licenciatura de matemáticas para las entrevistas. Se analizan las discontinuidades detectadas en el pasaje entre las etapas elemental y avanzada en tres dimensiones, los aspectos institucionales, los cognitivos y los epistemológicos, a partir de una revisión de bibliografía seleccionada y organizada según el criterio que nos dicta el objetivo perseguido. Para la parte experimental se aplica un cuestionario a estudiantes del último año de bachillerato de orientación científica y entrevistas a estudiantes del primer año universitario de la licenciatura de matemáticas, organizadas en torno a la lectura de algunas pruebas visuales y a otras actividades vinculadas con esas pruebas. El análisis se centra en dos ejes, las actividades de definición y las actividades de demostración. En el contexto del primer objetivo, se identifican como características del período de transición: el mayor peso en el contrato didáctico de la responsabilidad del alumno en su propio aprendizaje y en la actividad matemática que realiza, y diferencias en el proceso de trasposición didáctica que tiene lugar en el ámbito universitario respecto al de la secundaria obligatoria, cambios en la vinculación del alumno con la algoritmización, con la visualización y con la encapsulación de procesos matemáticos, y el mayor protagonismo de demostraciones y definiciones en la clase de matemáticas. En la etapa de transición, ni las definiciones ni las demostraciones deberían ser presentadas en el aula como fines en sí mismos. La lectura de pruebas visuales se ha mostrado como una actividad que favorece la discusión de aspectos relacionados con el quehacer matemático relevante en la etapa de transición.