956 resultados para bone-implant interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare immediate and staged approach implant placement in circumferential defects treated with deproteinized bovine bone mineral (DBBM); hidroxyapatite/tricalcium phosphate (HA/TP); autogenous bone (Ab); and coagulum (Cg); upon implant stability, osseointegration and alveolar crest maintenance. Materials and methods: Six dogs underwent extractions of lower premolars, bilaterally. Twelve weeks later four bone defects (6 mm wide/4 mm long) were drilled at one side and randomly filled with DBBM; HA/TP; Ab; and Cg, respectively, and left to heal (staged approach). Eight weeks later one implant (Osseospeed™, AstraTech) was placed in experimental sites. At the same session four defects were drilled on contra-lateral side and implants were inserted immediately after biomaterials grafting (immediate approach). Animals were euthanized 8 weeks later. Implant stability was measured by resonance frequency analysis (RFA) at installation and after sacrifice. Ground sections were prepared for bone contact (BIC); bone area (BA); distance implant shoulder-bone crest (IS-C); distance implant shoulder first bone contact (IS-B); and areas occupied by soft tissue. Results: The BA and BIC were superior in the staged approach. The Cg exhibited higher BIC and BA as compared with other materials at the total implant body (P = 0.004 and 0.012, respectively). The DBBM, HA/TP and Ab groups rendered similar BA and BIC. The immediate approach resulted in less crest resorption compared to staged approach. The biomaterials did not affect the IS-C and IS-B measurements. Particles area tended to be higher in DBBM group than HA/TP (P = 0.15), while soft tissue infiltrate was higher in DBBM group when used in the immediate approach (P = 0.04). The RFA indicated gain in stability in the staged approach (P = 0.002). The correlation test between RFA vs. BIC and BA demonstrated inferior stability for DBBM group in immediate approach (P = 0.01). Conclusions: Implants placed in healed defects resulted in better stability as a consequence of higher BIC and BA. The Cg alone rendered increased BIC compared to other materials in both approaches. Immediate approach should be preferable to staged approach in terms of alveolar crest maintenance. The BIC and BA values did not vary between micro and macro-threads in this experimental model. Implants installed in sites filled with DBBM in immediate approach were less stable. © 2011 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-adsorption occurs immediately following implantation of biomaterials. It is unknown at which extent protein-adsorption impacts the cellular events at bone-implant interface. To investigate this question, we compared the in-vitro outcome of osteoblastic cells grown onto titanium substrates and glass as control, by modulating the exposure to serum-derived proteins. Substrates consisted of 1) polished titanium disks; 2) polished disks nanotextured with H2SO4/H2O2; 3) glass. In the pre-adsorption phase, substrates were treated for 1h with αMEM alone (M-noFBS) or supplemented with 10%-foetal-bovine-serum (M-FBS). MC3T3-osteoblastic-cells were cultured on the pre-treated substrates for 3h and 24h, in M-noFBS and M-FBS. Subsequently, the culture medium was replaced with M-FBS and cultures maintained for 3 and 7days. Cell-number was evaluated by: Alamar-Blue and MTT assay. Mitotic- and osteogenic-activities were evaluated through fluorescence-optical-microscope by immunolabeling for Ki-67 nuclear-protein and Osteopontin. Cellular morphology was evaluated by SEM-imaging. Data were statistically analyzed using ANOVA-test, (p<0.05). At day3 and day7, the presence or absence of serum-derived proteins during the pre-adsorption phase had not significant effect on cell-number. Only the absence of FBS during 24h of culture significantly affected cell-number (p<0.0001). Titanium surfaces performed better than glass, (p<0.01). The growth rate of cells between day3 and 7 was not affected by the initial absence of FBS. Immunolabeling for Ki-67 and Osteopontin showed that the mitotic- and osteogenic- activity were ongoing at 72h. SEM-analysis revealed that the absence of FBS had no major influence on cell-shape. • Physico-chemical interactions without mediation by proteins are sufficient to sustain the initial phase of culture and guide osteogenic-cells toward differentiation. • The challenge is avoiding adsorption of ‘undesirables’ molecules that negatively impact on the cueing cells receive from surface. This may not be a problem in healthy patients, but may have an important role in medically-compromised-individuals in whom the composition of tissue-fluids is altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of the present study was to evaluate histometric changes around dental implants inserted at different levels in relation to the crestal bone, under different loading conditions.Material and methods: Thirty-six implants were inserted in the edentulous mandible of six mongrel dogs. Each implant was assigned to an experimental group according to the distance from the top of the implant to the crestal bone: Bone Level (at the crestal bone level), Minus 1 (1 mm below the crestal bone) or Minus 2 group (2 mm below the crestal bone). Each hemimandible was submitted to a loading protocol: conventional or immediate restoration. After 90 days, the animals were killed. Specimens were processed, and measurements were performed concerning the length of soft and hard peri-implant tissues. Data were analyzed using ANOVA and Student's t test (alpha=5%).Results: Among conventionally restored sites, the distance from the most coronal position of soft tissue margin (PSTM) and first bone-implant contact (fBIC) was greater for Minus 2 than for Bone Level and Minus 1 sites (P=0.03), but significant differences were not observed among immediately restored sites. Differences among groups were not observed concerning the PSTM, and the distance from the implant-abutment junction to fBIC. Greater amounts of lateral bone loss were observed for conventionally than for immediately restored sites (P=0.006).Conclusions: These findings suggest that the apical positioning of the top of the implant may not jeopardize the position of soft peri-implant tissues, and that immediate restoration can be beneficial to minimize lateral bone loss. Further studies are suggested to evaluate the clinical significance of these results in longer healing periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminin-1 has been reported as one of the factors responsible for the nucleation of calcium phosphates and, in vitro, has been reported to selectively recruit osteoprogenitors. This article focused on its in vivo effects, and evaluated the effect of laminin-1 local application on osseointegration. Polished cylindrical hydroxyapatite implants were coated with laminin-1 (test) and the bone responses in the rabbit tibiae after 2 and 4 weeks were evaluated and compared to the non-coated implants (control). Before the samples were processed for histological sectioning, they were three-dimensionally analysed with micro computed tomography (μCT). Both evaluation methods were analysed with regards to bone area around the implant and bone to implant contact. From the histologic observation, new bone formation around the laminin-1 coated implant at 2 weeks seemed to have increased the amount of supporting bone around the implant, however, at 4 weeks, the two groups presented no notable differences. The two-dimensional and three-dimensional morphometric evaluation revealed that both histologic and three-dimensional analysis showed some tendency in favour of the test group implants, however there was no statistical significance between the test and control group results. © 2012 International Association of Oral and Maxillofacial Surgeons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper was to evaluate the expression of RANK protein during bone-healing process around machined surface implants. Twenty male Wistar rats, 90 days old, after having had a 2 mm diameter and 6 mm long implant inserted in their right tibias, were evaluated at 7, 14, 21, and 42 days after healing. After obtaining the histological samples, slides were subjected to RANK immunostaining reaction. Results were quantitatively evaluated. Results. Immunolabeling analysis showed expressions of RANK in osteoclast and osteoblast lineage cells. The statistical analysis showed an increase in the expression of RANK in osteoblasts at 7 postoperative days and a gradual decrease during the chronology of the healing process demonstrated by mild cellular activity in the final stage (P < .05). Conclusion. RANK immunolabeling was observed especially in osteoclast and osteoblast cells in primary bone during the initial periods of bone-healing/implant interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal diseases such as osteoporosis impose a severe socio-economic burden to ageing societies. Decreasing mechanical competence causes a rise in bone fracture incidence and mortality especially after the age of 65 y. The mechanisms of how bone damage is accumulated under different loading modes and its impact on bone strength are unclear. We hypothesise that damage accumulated in one loading mode increases the fracture risk in another. This study aimed at identifying continuum damage interactions between tensile and compressive loading modes. We propose and identify the material constants of a novel piecewise 1D constitutive model capable of describing the mechanical response of bone in combined tensile and compressive loading histories. We performed several sets of loading–reloading experiments to compute stiffness, plastic strains, and stress-strain curves. For tensile overloading, a stiffness reduction (damage) of 60% at 0.65% accumulated plastic strain was detectable as stiffness reduction of 20% under compression. For compressive overloading, 60% damage at 0.75% plastic strain was detectable as a stiffness reduction of 50% in tension. Plastic strain at ultimate stress was the same in tension and compression. Compression showed softening and tension exponential hardening in the post-yield regime. The hardening behaviour in compression is unaffected by a previous overload in tension but the hardening behaviour in tension is affected by a previous overload in compression as tensile reloading strength is significantly reduced. This paper demonstrates how damage accumulated under one loading mode affects the mechanical behaviour in another loading mode. To explain this and to illustrate a possible implementation we proposed a theoretical model. Including such loading mode dependent damage and plasticity behaviour in finite element models will help to improve fracture risk analysis of whole bones and bone implant structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The role of osteocytes in bone structure and function remains partially unresolved. Their participation in mechanotransduction, i.e., the conversion of a physical stimulus into a cellular response, has been hypothesized. The present study was an evaluation of the osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. Methods: Fourteen male patients were included in the study; all of them were partially edentulous and needed a posterior mandibular restoration. Implants were inserted in these areas; half of the sample was loaded immediately (included in a fixed provisional prosthesis on the same day as implant surgery), whereas the other half was left to heal submerged. Fourteen implants (seven immediately loaded and seven unloaded) were retrieved with a trephine after a healing period of 8 weeks. The specimens were treated to obtain thin ground sections, and histomorphometry was used to evaluate the osteocyte index in the peri-implant bone. Results: A higher and statistically significant number of osteocytes was found in the peri-implant bone around immediately loaded implants (P=0.0081). A correlation between the percentage of bone-implant contact and osteocyte density was found for immediately loaded implants (P=0.0480) but not for submerged implants (P=0.2667). Conclusion: The higher number of osteocytes in the peri-implant bone around immediately loaded implants could be related to the functional adaptation required by the loading stimulus, which also explains the hypothesized involvement of the osteocytes in the maintenance of the bone matrix. J Periodontol 2009;80:499-504.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent clinical studies have described maxillary sinus floor augmentation by simply elevating the maxillary sinus membrane without the use of adjunctive grafting materials. Purpose: This experimental study aimed at comparing the histologic outcomes of sinus membrane elevation and simultaneous placement of implants with and without adjunctive autogenous bone grafts. The purpose was also to investigate the role played by the implant surface in osseointegration under such circumstances. Materials and Methods: Four tufted capuchin primates had all upper premolars and the first molar extracted bilaterally. Four months later, the animals underwent maxillary sinus membrane elevation surgery using a replaceable bone window technique. The schneiderian membrane was kept elevated by insertion of two implants (turned and oxidized, Brånemark System®, Nobel Biocare AB, Göteborg, Sweden) in both sinuses. The right sinus was left with no additional treatment, whereas the left sinus was filled with autogenous bone graft. Implant stability was assessed through resonance frequency analysis (Osstell™, Integration Diagnostics AB, Göteborg, Sweden) at installation and at sacrifice. The pattern of bone formation in the experimental sites and related to the different implant surfaces was investigated using fluorochromes. The animals were sacrificed 6 months after the maxillary sinus floor augmentation procedure for histology and histomorphometry (bone-implant contact, bone area in threads, and bone area in rectangle). Results: The results showed no differences between membrane-elevated and grafted sites regarding implant stability, bone-implant contacts, and bone area within and outside implant threads. The oxidized implants exhibited improved integration compared with turned ones as higher values of bone-implant contact and bone area within threads were observed. Conclusions: The amount of augmented bone tissue in the maxillary sinus after sinus membrane elevation with or without adjunctive autogenous bone grafts does not differ after 6 months of healing. New bone is frequently deposited in contact with the schneiderian membrane in coagulum-alone sites, indicating the osteoinductive potential of the membrane. Oxidized implants show a stronger bone tissue response than turned implants in sinus floor augmentation procedures. © 2006 Blackwell Publishing, Inc.