967 resultados para bone cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O osso é um tecido metabolicamente ativo e a sua remodelação é importante para regular e manter a massa óssea. Esse processo envolve a reabsorção do material ósseo por ação dos osteoclastos e a síntese de novo material ósseo mediado pelos osteoblastos. Vários estudos têm sugerido que a pressão arterial elevada está associada a alterações no metabolismo do cálcio, o que leva ao aumento da perda de cálcio e da remoção de cálcio do osso. Embora as alterações no metabolismo ósseo sejam um efeito adverso associado a alguns fármacos antihipertensores, o conhecimento em relação a este efeito terapêutico ligado com os bloqueadores de canais de cálcio é ainda muito escasso. Uma vez que os possíveis efeitos no osso podem ser atribuídos à ação antihipertensiva dessas moléculas, ou através de um efeito direto nas atividades metabólicas ósseas, torna-se necessário esclarecer este assunto. Devido ao facto de que as alterações no metabolismo ósseo são um efeito adverso associado a alguns fármacos antihipertensores, o objetivo deste trabalho é avaliar o efeito que os bloqueadores dos canais de cálcio exercem sobre as células ósseas humanas, nomeadamente osteoclastos, osteoblastos e co-culturas de ambos os tipos celulares. Verificou-se que os efeitos dos fármacos antihipertensores variaram consoante o fármaco testado e o sistema de cultura usado. Alguns fármacos revelaram a capacidade de estimular a osteoclastogénese e a osteoblastogénese em concentrações baixas. Independentemente da identidade do fármaco, concentrações elevadas revelaram ser prejudiciais para a resposta das células ósseas. Os mecanismos intracelulares através dos quais os efeitos foram exercidos foram igualmente afetados de forma diferencial pelos diferentes fármacos. Em resumo, este trabalho demonstrou que os bloqueadores dos canais de cálcio utilizados possuem a capacidade de afetar direta- e indiretamente a resposta de células ósseas humanas, cultivadas isoladamente ou co-cultivadas. Este tipo de informação é crucial para compreender e prevenir os potenciais efeitos destes fármacos no tecido ósseo, e também para adequar e eventualmente melhorar a terapêutica antihipertensora de cada paciente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alveolar bone is a suitable in vivo physiological model for the study of apoptosis and interactions of bone cells because it undergoes continuous, rapid and intense resorption/remodelling, during a long period of time, to accommodate the growing tooth germs. The intensity of alveolar bone resorption greatly enhances the chances of observing images of the extremely rapid events of apoptosis of bone cells and also of images of interactions between osteoclasts and osteocytes/osteoblasts/bone lining cells. To find such images, we have therefore examined the alveolar bone of young rats using light microscopy, the TUNEL method for apoptosis, and electron microscopy. Fragments of alveolar bone from young rats were fixed in Bouin and formaldehyde for morphology and for the TUNEL method. Glutaraldehyde-formaldehyde fixed specimens were processed for transmission electron microscopy. Results showed TUNEL positive round/ovoid structures on the bone surface and inside osteocytic lacunae. These structures - also stained by hematoxylin - were therefore interpreted, respectively, as osteoblasts/lining cells and osteocytes undergoing apoptosis. Osteoclasts also exhibited TUNEL positive apoptotic bodies inside large vacuoles; the nuclei of osteoclasts, however, were always TUNEL negative. Ultrathin sections revealed typical apoptotic images - round/ovoid bodies with dense crescent-like chromatin - on the bone surface, corresponding therefore to apoptotic osteoblasts/lining cells. Osteocytes also showed images compatible with apoptosis. Large osteoclast vacuoles often contained fragmented cellular material. Our results provide further support for the idea that osteoclasts internalize dying bone cells; we were however, unable to find images of osteoclasts in apoptosis. (C) 2001 Harcourt Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although it is generally accepted that osteoclasts breakdown and resorb bone matrix, the possibility that they may also be able to engulf apoptotic osteoblasts/ lining cells and/or osteocytes remains controversial. Apoptosis of osteoblasts/ lining cells and/or osteocytes and interactions between these cells and osteoclasts are extremely rapid events that are difficult to observe in viva. A suitable in viva model for studying these events is the alveolar bone of young rats because it is continuously. Thus, sections of aldehyde fixed alveolar undergoing intense resorption/remodeling bone of young rats were stained by the combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and the tartrate-resistant acid phosphatase (TRAP) method for the simultaneous visualization of apoptotic cells and osteoclasts in the same section. The combined TUNEL and TRAP reactions, in the same section, greatly facilitated visualization of relationship between osteoclasts and apoptotic bone cells during alveolar bone remodeling. Our results showed that several TRAP-positive osteoclasts exhibited large vacuoles containing TUNEL positive apoptotic structures, probably derived from osteoblasts/lining cells and/or osteocytes. These results support the idea that alveolar bone osteoclasts are able to internalize dying apoptotic bone cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of similar to 120 kDa that could be solubilized by phospholipase C or Polidocanol. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Argon ions were implanted on titanium discs to study its effect on bone cell adhesion and proli feration. Polished titanium discs were prepared and implanted with argon ions with different doses. Afterwards the samples were sterilized using UV light, inocu lated with human bone cells and incubated. Once fixed and rinsed, image analysis has been used to quantify the number of cells attached to the titanium discs. Cell proliferation tests were also conducted after a period of 120 hours. Cell adhesion was seen to be higher with ion im planted surface. SEM analysis has shown that the cells attached spread more on ion implanted surface. The numbers of cells attached were seen to be higher on implanted surfaces; they tend to occupy wider areas with healthier cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) represent multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), and adipocytes (fat cells). Their multi-potency provides a great promise as a cell source for tissue engineering and cell-based therapy for many diseases, particularly bone diseases and bone formation. To be able to direct and modulate the differentiation of MSCs into the desired cell types in situ in the tissue, nanotechnology is introduced and used to facilitate or promote cell growth and differentiation. These nano-materials can provide a fine structure and tuneable surface in nanoscales to help the cell adhesion and promote the cell growth and differentiation of MSCs. This could be a dominant direction in future for stem cells based therapy or tissue engineering for various diseases. Therefore, the isolation, manipulation, and differentiation of MSCs are very important steps to make meaningful use of MSCs for disease treatments. In this chapter, we have described a method of isolating MSC from human bone marrow, and how to culture and differentiate them in vitro. We have also provided research methods on how to use MSCs in an in vitro model and how to observe MSC biological response on the surface of nano-scaled materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND INFORMATION: Evidence has shown that mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are linked to stem cell properties. We currently lack a model showing how the occurrence of MET and EMT in immortalised cells influences the maintenance of stem cell properties. Thus, we established a project aiming to investigate the roles of EMT and MET in the acquisition of stem cell properties in immortalised oral epithelial cells. RESULTS: In this study, a retroviral transfection vector (pLXSN-hTERT) was used to immortalise oral epithelial cells by insertion of the hTERT gene (hTERT(+)-oral mucosal epithelial cell line [OME]). The protein and RNA expression of EMT transcriptional factors (Snail, Slug and Twist), their downstream markers (E-cadherin and N-cadherin) and embryonic stem cell markers (OCT4, Nanog and Sox2) were studied by reverse transcription PCR and Western blots in these cells. Some EMT markers were detected at both mRNA and protein levels. Adipocytes and bone cells were noted in the multi-differentiation assay, showing that the immortal cells underwent EMT. The differentiation assay for hTERT(+)-OME cells revealed the recovery of epithelial phenotypes, implicating the presence of MET. The stem cell properties were confirmed by the detection of appropriate markers. Altered expression of alpha-tubulin and gamma-tubulin in both two-dimensional-cultured (without serum) and three-dimensional-cultured hTERT(+)-OME spheroids indicated the re-programming of cytoskeleton proteins which is attributed to MET processes in hTERT(+)-OME cells. CONCLUSIONS: EMT and MET are essential for hTERT-immortalised cells to maintain their epithelial stem cell properties.