Application of high voltage, high frequency pulsed electromagnetic field on cortical bone tissue
Data(s) |
2012
|
---|---|
Resumo |
Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction. |
Formato |
application/pdf |
Identificador | |
Publicador |
Queensland University of Technology |
Relação |
http://eprints.qut.edu.au/53105/1/Hajarossadat_Asgarifar_Thesis.pdf Asgarifar, Hajarossadat (2012) Application of high voltage, high frequency pulsed electromagnetic field on cortical bone tissue. Masters by Research thesis, Queensland University of Technology. |
Fonte |
School of Biomedical Sciences; Faculty of Health |
Palavras-Chave | #pulsed power, cortical bone, high voltage, high frequency converter, positive buck-boost converter, pulsed electromagnetic field, electrical stimulation, mechanical properties of bone, bone functional behaviour |
Tipo |
Thesis |