953 resultados para bond rotation
Trans-cis Isomerism and acylimine formation in DsRed chromophore models: Intrinsic rotation barriers
Resumo:
The chromophore of the red fluorescent protein DsRed contains an acylimine substituent to a GFP-like chromophore structure. The acylimine is formed from the trans peptide linkage between residues F65 and Q66 in immature DsRed, but has a cis configuration in the mature protein. The relationship between acylimine formation and trans–cis isomerization is unresolved. We have calculated bond rotation profiles for models of mature and immature DsRed chromophores using B3LYP DFT. The isomerization barrier is substantially reduced in acylimine-substituted models, providing prima facie evidence that acylimine formation precedes trans–cis isomerization in DsRed chromophores.
Resumo:
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical 22 and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.
Resumo:
[(eta(6)-C(10)H(14))RuCl(mu-Cl)](2) (eta(6)-C(10)H(14) = eta(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N `'-triarylguanidines, (ArNH)(2)C=NAr, in toluene at ambient temperature to afford [(eta(6)-C(10)H(14))RuCl{kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(eta(6)-C(10)H(14))RuN(3){kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(eta(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{kappa(2)(N,N')((ArN)(2) C-N(H)Ar)}center dot xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8 center dot H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8 center dot H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral ``three legged piano stool'' geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-pi conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C=N pi* orbital of the imine unit. Complexes 1, 2, 5, 6, 8 center dot H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1.0:1.2:2:7:3.5:6.9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.
Resumo:
Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of sym-N,N',N `'-triarylguanidines, ArN=C(NHAr)(2) (sym = symmetrical; Ar = 2-MeC6H4 (LH22-tolyl), 2-(MeO)C6H4 (LH22-anisyl), 4-MeC6H4 (LH24-tolyl), 2,5-Me2C6H3 (LH22,5-xylyl), and 2,6-Me2C6H3 (LH22,6-xylyl)) in toluene under reflux condition for 3 h afforded cis- or trans-Cl2Pt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (1), 2-(MeO)C6H4 (2), 4-MeC6H4 (3), 2,5-h Me2C6H3 (4), and 2,6-Me2C6H3 (5), respectively) in 83-96% yield. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-tolyl and LH24-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 h afforded acetate-substituted products, cis-(AcO)ClPt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (6) and 4-MeC6H4 (7)) in 83% and 84% yields, respectively. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-anisyl and LH22-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 and 12 h afforded six-membered C,N] platinacycles, Pt{kappa(2)(C,N)-C6H3R-3(NHC(NHAr)(=NAr))-2}Cl(S(O)Me-2)] (Ar = 2-RC6H4; R = OMe (8) and Me (9)), in 92% and 79% yields, respectively. The new complexes have been characterized by analytical and spectroscopic techniques, and further the molecular structures of 1, 2, 4, 5, 6, and 8 have been determined by single-crystal X-ray diffraction. The platinum atom in 1, 4, and 5 exhibited the trans configuration, while that in 2, 6, and 8 exhibited the cis configuration. Complex 6 is shown to be the precursor for 9, and the former is suggested to transform to the latter possibly via an intramolecular C-H activation followed by elimination of AcOH. The solution behavior of new complexes has been studied by multinuclear NMR (H-1, Pt-195, and C-13) spectroscopy. The new complexes exist exclusively as a single isomer (trans (1 and 5) and cis (6 and 7)), a mixture of cis and trans isomers with the former isomer being predominant in the case of 2 and the latter isomer being predominant in the case of 3. Complex 5 in the trans form revealed the presence of one isomer at 0.007 mM concentration and two isomers in about 1.00:0.12 ratio at 0.154 mM concentration as revealed by H-1 NMR spectroscopy, and this has been ascribed to the restricted Pt-S bond rotation at higher concentration. Platinacycle 8 exists as one isomer, while 9 exists as a mixture of seven isomers in solution. The influence of steric factor, pi-acceptor property of the guanidine, subtle solid-state packing forces upon the configuration of the platinum atom, and the number of isomers in solution have been outlined. Factors that accelerate or slow down the cycloplatination reaction, the role of NaOAc, and a plausible mechanism of this reaction have been discussed.
Resumo:
Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.
Resumo:
Insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(mu-Br)](2) with various alkynes in CH2Cl2 under ambient conditions afforded diinserted eight-membered palladacycles, (kappa(2)(C,N):eta(2)(C=C)-PdBr] (1-11), in high yield (76-96%), while insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(Lewis base)Br] (VI-XI), with various alkynes under the aforementioned conditions afforded monoinserted six-membered palladacycles, kappa(2)(C,N)-Pd(Lewis base)Br] (12-21), in high yield (81-91%) except for 14 (23%). The insertion reaction of VI with 2 equiv of dimethyl acetylenedicarboxylate (DMAD) and the insertion reaction of 12 with 1 equiv of DMAD in CH2Cl2 under ambient conditions resulted in the formation of a diinserted zwitterionic five-membered palladacycle, kappa(2)(C,C)Pd(2,6-lutidine)Br] (22), in 76% and 70% yields, respectively. Palladacycle 22 upon reaction with AgOTf in wet MeCN afforded the ionic palladacycle kappa(2)(C,C)Pd(2,6-lutidine)(H2O)]OTf] (23) in 78% yield. The ring size of the ``kappa(2)(C,N)Pd]'' unit in the structurally characterized diinserted palladacycles (1 center dot 2CH(2)Cl(2)center dot H2O, 2, 5, and 7), and monoinserted palladacycles (17, 18, and 20 center dot C7H8 H2O) is smaller than that anticipated for mono- and diinserted palladacycles, and this feature is mainly ascribed to the proclivity of III-XI to undergo ring contraction cum amine-imine tautomerization upon alkyne insertion. Palladacycle 22 represents the first diinserted product obtained in alkyne insertion reactions of kappa(2)(C,N)Pd(Lewis base)X] type palladarycles. The molecular structure of 22 center dot H2O determined by X-ray diffraction indicates that the positive charge on the guanidinium moiety is balanced by the negative charge on the palladium atom and thus represents the first structurally characterized zwitterionic palladacycle to be reported in alkyne insertion chemistry. Plausible mechanisms of formation of 12-21 and 22 have been outlined. The presence of more than one species in solution for some of the palladacycles in the series 1-7 and 12-21 was explained by invoking the C-N single-bond rotation of the CN3 unit of the guanidine moiety, while this process in conjunction with Pd-N(lutidine) bond rotation was invoked to explain the presence of four isomers of 15, as studied with the aid of variable-concentration H-1 NMR experiments carried out for 14 and 15.
Resumo:
Depalladation of the monoalkyne-inserted cyclopalldated guanidines (kappa 2(C,N)Pd(2,6-Me2C5H3N)Br] (I and II) in PhCl under reflux conditions and that of the dialkyne-inserted cyclopalladated guanidine kappa(2)(C,N):eta(2)(C=C)PdBr] (III) in pyridine under reflux conditions afforded a guanidine-containing indole (1), imidaziondole (2), and benzazepine (3) in 80%, 67%, and 76%, yields, respectively. trans-L2PdBr2] species (L = 2,6-Me2C5H3N, C5H5N) were also isolated in the aforementioned reactions in 35%, 42%, and 40% yields. Further , the reaction of the cyclopalladated guanidine kappa(2)(C,N)Pd(mu-Br)](2) (IV) with AgBF4 in a CH2Cl2/MeCN mixture afforded the cationic pincer type cyclopalladated guanidine kappa(3)(C,N,O)Pd(MeCN)]BF4] (4) in 85% yield and this palladacycle upon crystallization in MeCN and the reaction of kappa(2)(C,N)Pd(mu-Br)](2) (V) with AgBf(4) in a CH2Cl2/MeCN mixture afforded the cationic palladacycles {kappa(2)(C,N)Pd(MeCN)(2)]BF4](5 and 6) in 89% and 91% yields, respectively. The separate reactions of 4 with 2 equiv of methyl phenylpropiolate (MPP) or diphenylacetylene (DPA) and the reaction of 5 with 2 equiv of MPP in PhCl at 110 degrees C afforded the guanidine-containing quinazolinium tetrafluoroborate 7 in 25-32% yields. The reaction of 6 with 2 equiv of DPA under otherwise identical conditions afforded the unsymmetrically substituted guanidinium tetrafluoroborate 8, containing a highly substituted naphthalene unit, in 82% yield. Compounds 1-8 were characterized by analytical and spectroscopic techniques, and all compounds except 4 were characterized by single-crystal X-ray diffraction. The Molecular structure of 2 and 3 are nove, as the framework in the former arises due to the formation of two C-N bonds upon depalladation while the butadienyl unit in the latter revealed cis,cis stereochemistry, a-feature unprecedented in alkyne insertion chemistry. Plausible pathways for the formation of heterocycles/carbocycles are proposed. the influence of substitutents on the aryl rings fo the cyclopalladated guanidine moiety and those on alkynes upon the nature of the products in addressed. Heterocycles 1 and 7 revealed the presence of two rotamers in about a 1.00:0.43 ratio in CDCl3 and in about a 1.00:0.14 ratio in CD3OD, respectively, as detected by H-1 NMR spectroscopy while in CD3CN and DMSO-d(6) (1) and CD3CN and CDCl3 (7), these heterocycles revealed the presence of a single rotamer. These spectral features are attributed to the restricted C-N single-bond rotation of the CN3 unit of the guanidine moiety, which possibly arises from steric constraint due to the formation of a N-H center dot center dot center dot Cl hydrogen bond with CDCl3 (1) and N-H center dot center dot center dot O and O-D center dot center dot center dot O hydrogen bonds with CD3OD (7).
Resumo:
Une série de dimères composés de thiophène-aniline encombrée stériquement a été synthétisée. Les différents processus de désactivation de l’état singulet excité ont été étudiés par UV-visible, fluorescence, phosphorescence, photolyse par impulsion laser et calculs théoriques. Les graphiques de Stern-Volmer obtenus à partir des expériences de désactivation des états singulet et triplet ont démontré l’efficacité de l’azométhine à désactiver les fluorophores. Les calculs semi-empiriques AM1 examinant l’effet des substituants encombrés ont démontrés que les groupements tert-butyls sur l’aniline ont moins d’influence sur la barrière de rotation N-aryl que les substitutions alkyles en ont sur la rotation de thiophène-C. Les calculs Rehm-Weller basés sur les potentiels d’oxydation et de réduction ont montré que l’autodésactivation de l’état excité des azométhines se fait par transfert d’électron photoinduit menant à une éradication complète de la fluorescence. Des complexes métalliques contenant des ligands azométhines ont aussi été préparés. Le ligand est composé d’une unité hydroxyquinoline lié à un cycle thiophène. Les données photophysiques de ces complexes indiquent un déplacement bathochromique aussi bien en absorbance qu’en fluorescence. Des dispositifs de détection d’ion métallique ont été préparés et un exemple à partir d’une solution de cuivre a montré un déplacement bathochromique.
Resumo:
The conformational characteristics of poly(dimethylsilmethylene), poly(dimethylsilethene), poly(dimethylsilethane) and a related material, poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane), have been investigated using the method of molecular mechanics. In this method, a quantitative analysis of the factors affecting the nature and magnitude of the bond rotation potentials governing their conformational behaviour has been undertaken. Along with their structural data, the results obtained were employed to calculate a variety of conformationally-dependent properties for these polymers, including the characteristic ratio, the dipole moment ratio and the mean-square radius of gyration. In addition, the dielectric relaxation behaviour of two samples of poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) with molar masses Mw = 28000 and Mw = 46000 respectively, have been studied as a function of temperature (179K-205K) and frequency (100-105Hz). Activation energies for the α-relaxation process and Davidson-Cole empirical distribution factors have been calculated.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
Logs from two hardwood plantations in north Queensland were peeled to assess the veneer and plywood potential of fast-grown tropical plantation eucalypts. After visual grading and veneer recovery calculatios, selected veneers were assembled to produce plywood panels. These were tested for mechanical properties and glue bond strength to determine the suitability of young, fast-grown, tropical eucalytps for panel product applications.
Resumo:
The 270 MHz 1H n.m.r. spectrum of benzyloxycarbonyl-Pro-N-methylamide in CDCl3 is exchange broadened at 293° K. Spectral lines due to two species are frozen out at 253° K and a dynamically averaged spectrum is obtained at 323° K. A selective broadening of the Cβ and Cγ resonances in the 13C n.m.r. spectrum is observed at 253° K, with a splitting of the Cβ and Cγ resonances into a pair of lines of unequal intensity. A similar broadening of Cβ and Cγ peaks is also detected in pivaloyl-Pro-N-methylamide where cis-trans interconversion about the imide bond is precluded by the bulky t-butyl group. The rate process is thus attributed to rotation about the Cα-CO bond (ψ) and a barrier (ΔG#) of 14kcal mol-1 is estimated. 13C n.m.r. data for pivaloyl-Pro-N-methylamide in a number of solvents is presented and the differences in the Cβ and Cγ chemical shifts are interpreted in terms of rotational isomerism about the Cα-CO bond.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.