164 resultados para bipyridine
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA = human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(eta(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy = bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(eta(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA=human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(η(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy=bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(η(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing.
Resumo:
The preparation and characterization of two families of building blocks for molecule-based magnetic and conducting materials are described in three projects. In the first project the synthesis and characterization of three bis-imine ligands LI - L3 is reported. Coordination of LI to a series of metal salts afforded the five novel coordination complexes Sn(L4)C4 (I), [Mn(L4)(u-CI)(CI)(EtOH)h (II), [CU(L4)(u-sal) h(CI04)2 (sal = salicylaldehyde anion) (III), [Fe(Ls)2]CI (IV) and [Fe(LI)h(u-O) (V). All complexes have been structurally and magnetically characterized. X-ray diffraction studies revealed that, upon coordination to Lewis acidic metal salts, the imine bonds of LI are susceptible to nucleophilic attack. As a consequence, the coordination complexes (I) - (IV) contain either the cyclised ligand L4 or hydrolysed ligand Ls. In contrast, the dimeric Fe3+ complex (V) comprises two intact ligand LI molecules. In. this complex, the ligand chelates two Fe(III) centres in a bis-bidentate manner through the lone pairs of a phenoxy oxygen and an imine nitrogen atom. Magnetic studies of complexes (II-V) indicate that the dominant interactions between neighbouring metal centres in all of the complexes are antiferromagnetic. In the second project the synthesis and characterization two families of TTF donors, namely the cyano aryl compounds (VI) - (XI) and the his-aryl TTF derivatives (XII) - (XIV) are reported. The crystal structures of compounds (VI), (VII), (IX) and (XII) exhibit regular stacks comprising of neutral donors. The UV -Vis spectra of compounds (VI) - (XIV) present an leT band, indicative of the transfer of electron density from the TTF donors to the aryl acceptor molecules. Chemical oxidation of donors (VI), (VII), (IX) and (XII) with iodine afforded a series of CT salts that where possible have been characterized by single crystal X -ray diffraction. Structural studies showed that the radical cations in these salts are organized in stacks comprising of dimers of oxidized TTF donors. All four salts behave as semiconductors, displaying room temperature conductivities ranging from 1.852 x 10-7 to 9.620 X 10-3 Scm-I. A second series of CT salts were successfully prepared via the technique of electrocrystallization. Following this methodology, single crystals of two CT salts were obtained. The single crystal X-ray structures of both salts are isostructural, displaying stacks formed by trimers of oxidized donors. Variable temperature conductivity measurements carried out on this series of CT salts reveal they also are semiconductors with conductivities ranging from 2.94 x 10-7 to 1.960 X 10-3 S em-I at room temperature. In the third project the synthesis and characterization of a series of MII(hfac)2 coordination complexes of donor ligand (XII) where M2+ = Co2+, Cu2+, Ni2+ and Zn2+ are reported. These complexes crystallize in a head-to-tail arrangement of TTF donor and bipyridine moieties, placing the metal centres and hfac ligands are located outside the stacks. Magnetic studies of the complexes (XV) - (XVIII) indicate that the bulky hfac ligands prevent neighbouring metal centres from assembling in close proximity, and thus they are magnetically isolated.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
We have applied a combination of spectroscopic and diffraction methods to study the adduct formed between squaric acid and bypridine, which has been postulated to exhibit proton transfer associated with a single-crystal to single-crystal phase transition at ca. 450 K. A combination of X-ray single-crystal and very-high flux powder neutron diffraction data confirmed that a proton does transfer from the acid to the base in the high-temperature form. Powder X-ray diffraction measurements demonstrated that the transition was reversible but that a significant kinetic energy barrier must be overcome to revert to the original structure. Computational modeling is consistent with these results. Modeling also revealed that, while the proton transfer event would be strongly discouraged in the gas phase, it occurs in the solid state due to the increase in charge state of the molecular ions and their arrangement inside the lattice. The color change is attributed to a narrowing of the squaric acid to bipyridine charge-transfer energy gap. Finally, evidence for the possible existence of two further phases at high pressure is also presented.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
Resumo:
Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).
Resumo:
The title compound, [Al(HPO4)(H2PO4)(C10H8N2)]n, consists of AlO4N2 octahedra vertex-linked to H2PO4 and HPO4 tetrahedra to form layers based on a (4,12)- net. The layers stack in an AAA fashion, held in place by pi-pi interactions between 2,2 '-bipyridine molecules coordinated to Al atoms in adjacent layers.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.