926 resultados para biotinylated dextran amine
Resumo:
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).
Resumo:
The ventral tegmental area (VTA) is a nodal link in reward circuitry. Based on its striatal output, it has been subdivided in a caudomedial part which targets the ventromedial striatum, and a lateral part which targets the ventrolateral striatum [Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78]. Whether these two VTA parts are interconnected and to what extent the VTA innervates the substantia nigra compacta (SNc) and retrorubral nucleus (RR) are critical issues for understanding information processing in the basal ganglia. Here, VTA projections to the VTA-nigral complex were examined in rats, using Phaseolus vulgaris leucoagglutinin (PHA-L) as anterograde tracer. The results show that the dorsolateral VTA projects to itself, as well as to the dorsal tier of the SNc and RR, largely avoiding the caudomedial VTA. The ventrolateral VTA innervates mainly the interfascicular nucleus. The components of the caudomedial VTA (the interfascicular, paranigral and caudal linear nuclei) are connected with each other. In addition, the caudomedial VTA (especially the paranigral and caudal linear nuclei) innervates the lateral VTA, and, to a lesser degree, the SNc and RR. The caudal pole of the VTA sends robust, bilateral projections to virtually all the VTA-nigral complex, which terminate in the dorsal and ventral tiers. Modest inputs from the medial supramammillary nucleus to ventromedial parts of the VTA-nigral complex were also identified. In double-immunostained sections, PHA-L-labeled varicosities were sometimes found apposed to tyrosine hydroxylase-positive neurons in the ventral mesencephalon. Overall, the results underscore that VTA projections to the VTA-nigral complex are substantial and topically organized. In general, these projections, like the spiralated striato-nigro-striatal loops, display a medial-to-lateral organization. This anatomical arrangement conceivably permits the ventromedial striatum to influence the activity of the lateral striatum. The caudal pole of the VTA appears to be a critical site for a global recruitment of the mesotelencephalic system. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.
Resumo:
Numerous functions have been attributed to the Edinger-Westphal nucleus (EW), including those related to feeding behavior, pain control, alcohol consumption and the stress response. The EW is thought to consist of two parts: one controls accommodation, choroidal blood flow and pupillary constriction, primarily comprising cholinergic cells and projecting to the ciliary ganglion; and the other would be involved in the non-ocular functions mentioned above, comprising peptide-producing neurons and projecting to the brainstem, spinal cord and prosencephalic regions. Despite the fact that the EW is well known, its connections have yet to be described in detail. The aim of this work was to produce a map of the hypothalamic sources of afferents to the EW in the rat. We injected the retrograde tracer Fluoro-Gold into the EW, and using biotinylated dextran amine, injected into afferent sources as the anterograde control. We found retrogradely labeled cells in the following regions: subfornical organ, paraventricular hypothalamic nucleus, arcuate nucleus, lateral hypothalamic area, zona incerta, posterior hypothalamic nucleus, medial vestibular nucleus and cerebellar interpositus nucleus. After injecting BDA into the paraventricular hypothalamic nucleus, lateral hypothalamic area and posterior hypothalamic nucleus, we found anterogradely labeled fibers in close apposition to and potential synaptic contact with urocortin 1-immunoreactive cells in the EW. On the basis of our findings, we can suggest that the connections between the EW and the hypothalamic nuclei are involved in controlling stress responses and feeding behavior. © 2013 The Authors.
Resumo:
Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The purine nucleoside inosine has been shown to induce axon outgrowth from primary neurons in culture through a direct intracellular mechanism. For this study, we investigated the effects of inosine in vivo by examining whether it would stimulate axon growth after a unilateral transection of the corticospinal tract. Inosine applied with a minipump to the rat sensorimotor cortex stimulated intact pyramidal cells to undergo extensive sprouting of their axons into the denervated spinal cord white matter and adjacent neuropil. Axon growth was visualized by anterograde tracing with biotinylated dextran amine and by immunohistochemistry with antibodies to GAP-43. Thus, inosine, a naturally occurring metabolite without known side effects, might help to restore essential circuitry after injury to the central nervous system.
Resumo:
A esquistossomose é uma doença tropical causada, principalmente, pelo trematódeo Schistosoma mansoni, sendo que sua ocorrência afeta, mundialmente, 110 milhões de pessoas. A deposição dos ovos do parasita pode ocorrer, de forma ectópica, no sistema nervoso central (SNC) o qual leva à formação de granulomas com consequente produção do Fator de Crescimento Neuronal (NGF). Uma vez que muitos estudos demonstram a importância do NGF no desenvolvimento das vias corticais visuais, nosso estudo visou avaliar a possível alteração dos níveis de NGF no sistema visual assim como o impacto deste sobre a morfologia de células piramidais em dois modelos animais. A alteração na concentração do fator de crescimento assim como a morfometria neuronal foram avaliadas em animais permissíveis (camundongos) e não permissíveis (ratos) à infecção. Foram utilizados 174 ratos (Hooded Lister) e 135 camundongos albinos criados e mantidos em gaiolas e alimentados ad libitum. Esses animais foram inoculados, logo após o nascimento, com 50 cercárias. Setenta e sete ratos e 73 camundongos foram inoculados com solução salina e constituíram o grupo controle do estudo. Os períodos de infecção abrangeram uma a 48 semanas. Amostras do fígado e córtex visual foram retiradas, extraídas e quantificadas com kit de imunoensaio (ChemiKineTM Nerve Growth Factor (NGF) Sandwich ELISA Kit – Chemicon International). Para a análise morfométrica utilizamos células piramidais da camada IV do córtex visual marcadas através de injeção extracelular com Dextrana-Biotinilada (10.000 kDa). Os resultados foram expressos como média ± desvio padrão. Utilizamos teste t de Student para determinar diferenças estatísticas entre os grupos estudados. O valor médio de NGF encontrado no córtex visual de ratos infectados foi 39,2% maior do que no grupo controle (infectados: 400,9 ± 143,1 pg/mL; controle: 288 ± 31,9 pg/mL; p < 0,0001). Nas amostras de fígado, o aumento foi 28,9% maior no grupo infectado (infectados: 340,9 ± 103,9 pg/mL; p < 0,01; controle: 264,4 ± 38,6 pg/mL). Nenhum aumento significativo foi detectado antes de uma semana de infecção. Entre os camundongos, o aumento de NGF na área visual foi de 94,1% (infectados: 478,4 ± 284 pg/mL; p < 0,01; controle: 246,5 ± 76,8 pg/mL). No fígado destes animais o aumento foi de 138,7% (infectados: 561,8 ± 260,7 pg/mL; p < 0,01; controle: 301,3 ± 134,6 pg/mL). Em camundongos encontramos diferenças significativas quanto aos parâmetros dendríticos avaliados. A quantidade de dendritos foi 11,41% maior no grupo infectado do que no controle (controle: 25,28 ± 5,19; infectados: 28,16 ± 7,45; p < 0,05). O comprimento total dos dendritos também foi afetado (controle: 4.916,52 ± 1.492,65 μm; infectados: 5.460,40 ± 1.214,07 μm; p < 0,05) correspondendo a um aumento de 11,06%. A área total do campo receptor dendrítico sofreu um aumento de 12,99% (controle: 29.346,69 ± 11.298,62 μm2; infectados: 33.158,20 ± 7.758,31; p < 0,05) enquanto que a área somática teve uma redução de 13,61% (controle: 119,38 ± 19,68 μm2; infectados: 103,13 ± 24,69 μm2; p < 0,001). Quando foram avaliados os efeitos do aumento de NGF em ratos infectados não observamos diferenças significativas quanto aos parâmetros dendríticos analisados, em comparação ao grupo controle, com exceção de um aumento na área do corpo neuronal da ordem de 21,18% (controle: 132,20 ± 28,46 μm2; infectados: 160,20 ± 31,63 μm2; p < 0,00001). Este trabalho mostrou que a reação de produção de NGF no SNC durante a infecção por Schistosoma mansoni ocorre em maior magnitude no modelo permissível do que no modelo não permissível. Também demonstramos que, em camundongos, os efeitos sobre a morfologia neuronal é drasticamente afetada quando o organismo é submetido a um aumento na concentração de NGF em decorrência da infecção por Schistosoma mansoni. Diante destes dados, estudos avaliando as possíveis repercussões visuais e também dos efeitos na fisiologia celular causados pela infecção mansônica torna-se necessário para avaliar o real dano causado por este aumento patológico do fator de crescimento neuronal nas vias visuais de mamíferos.
Resumo:
Primary aminoporphyrin, secondary bis(porphyrinyl)amine and hydroxyporphyrin complexes have been isolated and characterised both spectroscopically and crystallographically from the reaction of 5-bromo-10,15,20-triphenylporphyrinato-nickel(II) with hydrazine under palladium catalysis.
Resumo:
An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.
Resumo:
In the monomeric title complex, [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O, the distorted octahedral CoN2O4 coordination environment comprises two N-atom donors from the bidentate dipyridyldiamine ligand, two O-atom donors from one of the carboxylate groups of the bidentate chelating adipate ligand and two water molecules. In addition, there are three solvent water molecules which are involved in both intra- and inter-unit O-HO hydrogen-bonding interactions, which together with an amine-water N-HO hydrogen bond produce a three-dimensional framework.
Resumo:
The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.