989 resultados para biological fluids
Resumo:
Background: We report the validation of a method for the determination of acetaldehyde, acetone, methanol, and ethanol in biological fluids using manual headspace sample introduction and an acetonitrile internal standard. Method: This method uses a capillary column (I = 30 m, I.D. = 0.25 mm, dF = 0.25 mu m) installed in a gas chromatography-flame ionization detector (GC-FID) apparatus with a run time of 7.5 minutes. Results: Analysis of the retention times and the resolution of the analyte peaks demonstrated excellent separation without widening of the peaks. Precision and accuracy were good (interassay precision < 15% and recovery between 85% and 115%) in both blood and urine. Conclusion: The method was linear (r > 0.09) over the analytical measurement range (AMR) of each analyte.
Resumo:
New PVC membrane electrodes for the determination of sulfadiazine (SDZ) are presented. The electrodes are fabricated with conventional and tubular configurations with a graphite-based electrical contact, and no internal reference solution. The selective membranes consist of bis(triphenylphosphoranilidene)ammonium·SDZ (electrode A), tetraoctylammonium bromide (electrode B), or iron(II)-phthalocyanine (FePC) (electrode C) electroactive materials dispersed in a PVC matrix of o-nitrophenyl octyl ether (o-NPOE) plasticizer. The sensors A, B, and C displayed linear responses over the concentration ranges 1.0*10-2 – 1.0*10–5, 1.0*10–2 – 7.5*10–6, and 3.2*10–2 – 7.0* 10–6 mol l–1 (detection limits of 1.09, 2.04 and 0.87 mg ml–1) with anionic slopes of –57.3 ± 0.1, –46.7 ± 0.5, and –65.1 ± 0.2 mV decade–1, respectively. No effect from pH was observed within 4.0 – 5.5, 4.8 – 10, and 4.5 – 8, respectively, and good selectivity was found. The sensors were applied to the analysis of pharmaceuticals and biological fluids in steady state and in flow conditions.
Resumo:
Doxorubicin is an antineoplasic agent active against sarcoma pulmonary metastasis, but its clinical use is hampered by its myelotoxicity and its cumulative cardiotoxicity, when administered systemically. This limitation may be circumvented using the isolated lung perfusion (ILP) approach, wherein a therapeutic agent is infused locoregionally after vascular isolation of the lung. The influence of the mode of infusion (anterograde (AG): through the pulmonary artery (PA); retrograde (RG): through the pulmonary vein (PV)) on doxorubicin pharmacokinetics and lung distribution was unknown. Therefore, a simple, rapid and sensitive high-performance liquid chromatography method has been developed to quantify doxorubicin in four different biological matrices (infusion effluent, serum, tissues with low or high levels of doxorubicin). The related compound daunorubicin was used as internal standard (I.S.). Following a single-step protein precipitation of 500 microl samples with 250 microl acetone and 50 microl zinc sulfate 70% aqueous solution, the obtained supernatant was evaporated to dryness at 60 degrees C for exactly 45 min under a stream of nitrogen and the solid residue was solubilized in 200 microl of purified water. A 100 microl-volume was subjected to HPLC analysis onto a Nucleosil 100-5 microm C18 AB column equipped with a guard column (Nucleosil 100-5 microm C(6)H(5) (phenyl) end-capped) using a gradient elution of acetonitrile and 1-heptanesulfonic acid 0.2% pH 4: 15/85 at 0 min-->50/50 at 20 min-->100/0 at 22 min-->15/85 at 24 min-->15/85 at 26 min, delivered at 1 ml/min. The analytes were detected by fluorescence detection with excitation and emission wavelength set at 480 and 550 nm, respectively. The calibration curves were linear over the range of 2-1000 ng/ml for effluent and plasma matrices, and 0.1 microg/g-750 microg/g for tissues matrices. The method is precise with inter-day and intra-day relative standard deviation within 0.5 and 6.7% and accurate with inter-day and intra-day deviations between -5.4 and +7.7%. The in vitro stability in all matrices and in processed samples has been studied at -80 degrees C for 1 month, and at 4 degrees C for 48 h, respectively. During initial studies, heparin used as anticoagulant was found to profoundly influence the measurements of doxorubicin in effluents collected from animals under ILP. Moreover, the strong matrix effect observed with tissues samples indicate that it is mandatory to prepare doxorubicin calibration standard samples in biological matrices which would reflect at best the composition of samples to be analyzed. This method was successfully applied in animal studies for the analysis of effluent, serum and tissue samples collected from pigs and rats undergoing ILP.
Resumo:
We present a viscometric affinity biosensor that can potentially allow continuous multi-analyte monitoring in biological fluids like blood or plasma. The sensing principle is based on the detection of viscosity changes of a polymeric solution which has a selective affinity for the analyte of interest. The chemico-mechanical sensor incorporates an actuating piezoelectric diaphragm, a sensing piezoelectric diaphragm and a flow-resisting microchannel for viscosity detection. A free-standing Anodic Alumina Oxide (AAO) porous nano-membrane is used as selective interface. A glucose-sensitive sensor was fabricated and extensively assessed in buffer solution. The sensor reversibility, stability and sensitivity were excellent during at least 65 hours. Results showed also a good degree of stability for a long term measurement (25 days). The sensor behaviour was furthermore tested in fetal bovine serum (FBS). The obtained results for glucose sensing are very promising, indicating that the developed sensor is a candidate for continuous monitoring in biological fluids. Sensitive solutions for ionized calcium and pH are currently under development and should allow multi-analyte sensing in the near future.
Resumo:
Vancomycin is a glycopeptide antibiotic employed in the treatment of infections caused by certain methicillin-resistant staphylococci. It is indicated also for patients allergic to penicillin or when there is no response to penicillins or cephalosporins. The adequate vancomycin concentration levels in blood serum lies between 5 and 10 mg/L. Higher values are toxic, causing mainly nephrotoxicity and ototoxicity. Various analytical methods are described in the literature: spectrophotometric, immunologic, biologic and chromatographic methods. This paper reviews the main analytical methods for vancomycin determination in biological fluids and in pharmaceutical preparations.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
During recent years a consistent number of central nervous system (CNS) drugs have been approved and introduced on the market for the treatment of many psychiatric and neurological disorders, including psychosis, depression, Parkinson disease and epilepsy. Despite the great advancements obtained in the treatment of CNS diseases/disorders, partial response to therapy or treatment failure are frequent, at least in part due to poor compliance, but also genetic variability in the metabolism of psychotropic agents or polypharmacy, which may lead to sub-therapeutic or toxic plasma levels of the drugs, and finally inefficacy of the treatment or adverse/toxic effects. With the aim of improving the treatment, reducing toxic/side effects and patient hospitalisation, Therapeutic Drug Monitoring (TDM) is certainly useful, allowing for a personalisation of the therapy. Reliable analytical methods are required to determine the plasma levels of psychotropic drugs, which are often present at low concentrations (tens or hundreds of nanograms per millilitre). The present PhD Thesis has focused on the development of analytical methods for the determination of CNS drugs in biological fluids, including antidepressants (sertraline and duloxetine), antipsychotics (aripiprazole), antiepileptics (vigabatrin and topiramate) and antiparkinsons (pramipexole). Innovative methods based on liquid chromatography or capillary electrophoresis coupled to diode-array or laser-induced fluorescence detectors have been developed, together with the suitable sample pre-treatment for interference removal and fluorescent labelling in case of LIF detection. All methods have been validated according to official guidelines and applied to the analysis of real samples obtained from patients, resulting suitable for the TDM of psychotropic drugs.
Resumo:
A rapid method has been developed for the quantification of the prototypic cyclotide kalata B I in water and plasma utilizing matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry. The unusual structure of the cyclotides means that they do not ionise as readily as linear peptides and as a result of their low ionisation efficiency, traditional LC/MS analyses were not able to reach the levels of detection required for the quantification of cyclotides in plasma for pharmacokinetic studies. MALDI-TOF-MS analysis showed linearity (R-2 > 0.99) in the concentration range 0.05-10 mu g/mL with a limit of detection of 0.05 mu g/mL (9 fmol) in plasma. This paper highlights the applicability of MALDI-TOF mass spectrometry for the rapid and sensitive quantification of peptides in biological samples without the need for extensive extraction procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The use of screening techniques, such as an alternative light source (ALS), is important for finding biological evidence at a crime scene. The objective of this study was to evaluate whether biological fluid (blood, semen, saliva, and urine) deposited on different surfaces changes as a function of the age of the sample. Stains were illuminated with a Megamaxx™ ALS System and photographed with a Canon EOS Utility™ camera. Adobe Photoshop™ was utilized to prepare photographs for analysis, and then ImageJ™ was used to record the brightness values of pixels in the images. Data were submitted to analysis of variance using a generalized linear mixed model with two fixed effects (surface and fluid). Time was treated as a random effect (through repeated measures) with a first-order autoregressive covariance structure. Means of significant effects were compared by the Tukey test. The fluorescence of the analyzed biological material varied depending on the age of the sample. Fluorescence was lower when the samples were moist. Fluorescence remained constant when the sample was dry, up to the maximum period analyzed (60 days), independent of the substrate on which the fluid was deposited, showing the novelty of this study. Therefore, the forensic expert can detect biological fluids at the crime scene using an ALS even several days after a crime has occurred.
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biology
Resumo:
This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight into IF databases is given. Comparisons of dietary intake of IFs in Asian and Western populations, in special subgroups like vegetarians, vegans, and infants are made and our knowledge on their absorption, distribution, metabolism, and excretion by the human body is presented. The influences of the gut microflora, age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs on a range of health outcomes including atherosclerosis, breast, intestinal, and prostate cancers, menopausal symptoms, bone health, and cognition are reviewed on the basis of the available in vitro, in vivo animal and human data.
Resumo:
Background and Purpose: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. Data Identification: A search of the English-language literature (Medline) and a systematic review of published articles were carried out. Study Selection: Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. Data Extraction: The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). Results of Data Synthesis: Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. Conclusions: Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis. © Springer-Verlag 2010.
Resumo:
As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.