742 resultados para best practice
Resumo:
This paper outlines a process for fleet safety training based on research and management development programmes undertaken at the University of Huddersfield in the UK (www.hud.ac.uk/sas/trans/transnews.htm) and CARRS-Q in Australia (www.carrsq.qut.edu.au/staff/Murray.jsp) over the past 10 years.
Resumo:
Genuine sustainability would require that urban development provide net positive social and ecological gains to compensate for previous lost natural capital and carrying capacity. Thus far, green buildings do not contribute to net sustainability. While they reduce relative resource consumption, they consume vast quantities of materials, energy and water.i Moreover, they replace land and ecosystems with structures that, at best, ‘mimic’ ecosystems. Elsewhere, the author has proposed a‘sustainability standard’, where development would leave the ecology, as well as society, better off after construction than before.ii To meet this standard, a development would need to add natural and social capital beyond what existed prior to development. Positive DesignTM or Positive DevelopmentTM is that which expands both the ecological base (life support system) and the public estate (equitable access to means of survival). How to achieve this is discussed in Positive Development (Birkeland 2008). This paper examines how net positive gains can be achieved in a ubtropical as well as temperate environment.
Resumo:
The Co-operative Research Centre for Construction Innovation (CRC-CI) is funding a project known as Value Alignment Process for Project Delivery. The project consists of a study of best practice project delivery and the development of a suite of products, resources and services to guide project teams towards the best procurement approach for a specific project or group of projects. These resources will be focused on promoting the principles that underlie best practice project delivery rather than simply identifying an off-the-shelf procurement system. This project builds on earlier work by Sidwell, Kennedy and Chan (2002), on re-engineering the construction delivery process, which developed a procurement framework in the form of a Decision Matrix
Resumo:
In Australia, an average 49 building and construction workers have been killed at work each year since 1997-98. Building/construction workers are more than twice as likely to be killed at work, than the average worker in all Australian industries. The ‘Safer Construction’ project, funded by the CRC-Construction Innovation and led by a task force comprising representatives of construction clients, designers and constructors, developed a Guide to Best Practice for Safer Construction. The Guide, which was informed by research undertaken at RMIT University, Queensland University of Technology and Curtin University, establishes broad principles for the improvement of safety in the industry and provides a ‘roadmap’ for improvement based upon lifecycle stages of a building/construction project. Within each project stage, best practices for the management of safety are identified. Each best practice is defined in terms of the recommended action, its key benefits, desirable outcomes, performance measures and leadership. ‘Safer Construction’ practices are identified from the planning to commissioning stages of a project. The ‘Safer Construction’ project represents the first time that key stakeholder groups in the Australian building/construction industry have worked together to articulate best practice and establish an appropriate basis for allocating (and sharing) responsibility for project safety performance.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the consultants’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the subcontractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The construction industry is a key national economic component. It tends to be at the forefront of cyclic changes in the Australian economy. It has a significant impact, both directly and indirectly, on the efficiency and productivity of other industries. Moreover it affects everyone to a greater or lesser extent; through its products whether they are manifested in the physical infrastructure that supports the operation of the economy or through the built environment that directly impacts on the quality of life experienced by individuals. In financial terms the industry makes one of the largest contributions to the Australian economy, accounting for 4.7 per cent of GDP 1 which was worth over $30B in 20012. The construction industry is comprised of a myriad of small firms, across several important sectors including, o Residential building, o Commercial building, o Building services, o Engineering, o Infrastructure o Facilities Management o Property Development Each sector is typified by firms that have distinctive characteristics such as the number of employees, size and value of contracts, number of jobs, and so forth. It tends to be the case that firms operating in commercial building are larger than those involved in residential construction. The largest contractors are found in engineering and infrastructure, as well as in the commercial building sub-sectors. However all sectors are characterised by their reliance upon sub-contractors to carry out on-site operations. Professionals from the various design consultant groups operate across all of these sectors. This description masks one of the most significant underlying causes of inefficiency in the construction industry, namely its fragmentation. The Construction Industry chapter of the 2004 Australian Year Book3, published by the Australian Bureau of Statistics unmasks the industry’s fragmented structure, typified by the large number of operating businesses within it, the vast majority of which are small companies employing less than 5 people. It identifies over 190,000 firms, of which over 90 percent employ less than 5 people. At the other end of the spectrum, firms employing 20 or more people account for fractionally more than one percent of businesses in the industry.
Resumo:
The field of research training (for students and supervisors) is becoming more heavily regulated by the Federal Government. At the same time, quality improvement imperatives are requiring staff across the University to have better access to information and knowledge about a wider range of activities each year. Within the Creative Industries Faculty at the Queensland University of Technology (QUT), the training provided to academic and research staff is organised differently and individually. This session will involve discussion of the dichotomies found in this differentiated approach to staff training, and begin a search for best practice through interaction and input from the audience.