974 resultados para aversive stimuli
Resumo:
Background: One characteristic of post traumatic stress disorder is an inability to adapt to a safe environment i.e. to change behavior when predictions of adverse outcomes are not met. Recent studies have also indicated that PTSD patients have altered pain processing, with hyperactivation of the putamen and insula to aversive stimuli (Geuze et al, 2007). The present study examined neuronal responses to aversive and predicted aversive events. Methods: Twenty-four trauma exposed non-PTSD controls and nineteen subjects with PTSD underwent fMRI imaging during a partial reinforcement fear conditioning paradigm, with a mild electric shock as the unconditioned stimuli (UCS). Three conditions were analyzed: actual presentations of the UCS, events when a UCS was expected, but omitted (CS+), and events when the UCS was neither expected nor delivered (CS-). Results: The UCS evoked significant alterations in the pain matrix consisting of the brainstem, the midbrain, the thalamus, the insula, the anterior and middle cingulate and the contralateral somatosensory cortex. PTSD subjects displayed bilaterally elevated putamen activity to the electric shock, as compared to controls. In trials when USC was expected, but omitted, significant activations were observed in the brainstem, the midbrain, the anterior insula and the anterior cingulate. PTSD subjects displayed similar activations, but also elevated activations in the amygdala and the posterior insula. Conclusions: These results indicate altered fear and safety learning in PTSD, and neuronal activations are further explored in terms of functional connectivity using psychophysiological interaction analyses.
Resumo:
Two animal models of pain were used to study the effects of short-term protein malnutrition and environmental stimulation on the response threshold to aversive stimuli. Eighty male Wistar rats were used. Half of the pups were submitted to malnutrition by feeding their mothers a 6% protein diet from 0 to 21 days of age while the mothers of the other half (controls) were well nourished, receiving 16% protein. From 22 to 70 days all rats were fed commercial lab chow. Half of the animals in the malnourished and control groups were maintained under stimulating conditions, including a 3-min daily handling from 0 to 70 days and an enriched living cage after weaning. The other half was reared in a standard living cage. At 70 days, independent groups of rats were exposed to the shock threshold or to the tail-flick test. The results showed lower body and brain weights in malnourished rats when compared with controls at weaning and testing. In the shock threshold test the malnourished animals were more sensitive to electric shock and environmental stimulation increased the shock threshold. No differences due to diet or environmental stimulation were found in the tail-flick procedure. These results demonstrate that protein malnutrition imposed only during the lactation period is efficient in inducing hyperreactivity to electric shock and that environmental stimulation attenuates the differences in shock threshold produced by protein malnutrition
Resumo:
Albino rats were submitted to a 24-h period of social isolation (individual housing) combined with 0, 1, 2 or 3 twenty-four-hour periods of exposure to different vivaria (novelty) and tested in the elevated plus-maze. Results, reported as mean ± SEM for N = 12, show that the time (in seconds) spent in the open arms by rats exposed to novelty for 0, 1, 2 and 3 days was 28.3 ± 4.4, 31.6 ± 3.2, 29.1 ± 3.5 and 25.0 ± 3.3, respectively, when grouped in the same vivarium; 29.6 ± 2.7, 7.6 ± 2.1, 9.6 ± 4.4 and 28.5 ± 3.7 when grouped in different vivaria; 2.9 ± 1.1, 1.8 ± 1.0, 2.7 ± 1.1 and 0 ± 0 when isolated in the same vivarium, and 2.6 ± 1.1, 31.5 ± 8.2, 24.8 ± 4.2 and 0 ± 0 when isolated in different vivaria. The number of entries into the open and closed arms followed a similar trend. This indicates that, separately, both exposure to novelty and isolation are aversive manipulations. Paradoxically, when novelty was combined with a concomitant 24-h period of social isolation prior to testing, the decrease in exploratory behavior caused by either of the two aversive manipulations alone was reverted. These results are indicative that less intense anxiety triggers mechanisms mediating less energetic behavior such as freezing, while higher levels trigger mechanisms mediating more vigorous action, such as flight/fight behavior, since the combination of two aversive situations resulted in more exploratory behavior than with either alone. They are also suggestive of habituation to the effects of novelty, since exposure to it for 3 days produced exploratory behavior similar to that of controls
Resumo:
Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.
Resumo:
Neophobia, the fear of novelty, is a behavioral trait found across a number of animal species, including humans. Neophobic individuals perceive novel environments and stimuli to have aversive properties, and exhibit fearful behaviors when presented with non-familiar situations. The present study examined how early life exposure to aversive novel stimuli could reduce neophobia in bobwhite quail chicks. Experiment 1 exposed chicks to a novel auditory tone previously shown to be aversive to naïve chicks (Suarez, 2012) for 24 hours immediately after hatching, then subsequently tested them in the presence of the tone within a novel maze task. Postnatally exposed chicks demonstrated decreased fearfulness compared to naïve chicks, and behaved more similarly to chicks tested in the presence of a known attractive auditory stimulus (a bobwhite maternal assembly call vocalization). Experiment 2 exposed chicks to the novel auditory tone for 24 hours prenatally, then subsequently tested them within a novel maze task. Prenatally exposed chicks showed decreased fearfulness to a similar degree as those postnatally exposed, revealing that both prenatal and postnatal exposure methods are capable of decreasing fear of auditory stimuli. Experiment 3 exposed chicks to a novel visual stimulus for 24 hours postnatally, then subsequently tested them within a novel emergence box / T-maze apparatus. Chicks exposed to the visual stimulus showed decreased fearfulness compared to naïve chicks, thereby demonstrating the utility of this method across sense modalities. Experiment 4 assessed whether early postnatal exposure to one novel stimulus could generalize and serve to decrease fear of novelty when chicks were tested in the presence of markedly different stimuli. By combining the methods of Experiments 1 and 3, this experiment revealed that chicks exposed to one type of stimulus (auditory or visual) demonstrated decreased fear when subsequently tested in the presence of the opposite type of novel stimulus. These results suggest that experience with novel stimuli can moderate the extent to which neophobia will develop during early development.
Resumo:
Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.
Resumo:
Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
In 1998, three different research groups simultaneously reported increased anxiety-related behavior in tests of conflict in their serotonin 1a (5-HT1a) receptor knockout (KO) line with male mice being more severely affected by 5-HT1a receptor deletion than female KO. Similarly, in the hippocampus, we observed increased dendritic complexity in the stratum radiatum of CA1 pyramidal neurons in male but not in female 5-HT1a receptor KO mice. These observations prompted us to investigate gender- dependent differences of 5-HT1a receptor deletion in hippocampal-related behavioral tasks. Testing our mice in anxiety-related paradigms, we reproduced the original studies showing increased anxiety- related behavior in male 5-HT1a receptor KO mice when compared to male WT mice, but no difference between female 5-HT1a receptor KO and WT mice. Similarly, male 5-HT1a receptor KO mice were impaired in association of aversive stimuli fear conditioning paradigms. We argue that increased dendritic complexity and increased synaptic strength of CA3-CA1 synapses in the stratum radiatum impaired proper signal propagation attributed to overactivation of CA1 pyramidal neurons leading to impaired fear memory of male 5-HT1a receptor KO mice. Similar mechanisms in the ventral hippocampus are likely to have contributed to gender-dependent differences in anxiety-related behavior in our and the original studies from 1998. In this study, we started to shed light on the 5-HT1a receptor downstream signaling pathways involved in dendritogenesis of pyramidal neurons during early postnatal development. We could show that NR2B-containing NMDA receptor during development acts downstream of 5-HT1a receptor and is responsible for increased amount of branching in male 5-HT1a receptor KO mice. Conversely, protein and NR2B mRNA expression was increased in 5-HT1a receptor KO mice at P15. Although the exact signaling cascade of 5-HT1a receptor regulating NR2B-containing NMDA receptor has not been determined, CaMKII is a potential downstream effector to influence transportation and removal of NR2B-containing NMDA receptors to and from the synapse. In contrast, Erk1/2 likely acts downstream of NR2B-containing NMDA receptors and was shown to be sufficient to regulate dendritic branching. Moreover, increased NR2B-containing NMDA receptor mediated cell death via excitotoxicity during development and is likely to be involved in reduced survival of adult born neurons in the hippocampus of 5-HT1a receptor KO male. The convergence of 5-HT1a receptor signaling onto NR2B-containing NMDA receptor signaling enables estrogen to interfere with its downstream pathway via G-protein coupled estrogen receptor 1 activation resulting in normalization of branching and behavior in female 5-HT1a receptor mice. In conclusion, our data strongly suggests a hormone- regulated mechanism that by converging on NR2B-containing NMDA receptor signaling is able to normalize morphology of pyramidal neurons and behavior of female 5-HT1a receptor KO mice. Our findings provide a possible explanation for gender-dependent differences in the occurrence of mental disorders with 5-HT1a receptor abnormalities as a strong predisposing factor. -- En 1998, trois équipes de recherche ont décrit un comportement de type anxieux dans des tests de conflit pour leur souris transgéniques avec une délétion du gène pour le récepteur 5-HT1a de la sérotonine. De plus, les trois groupes rapportent un phénotype plus sévère pour le comportement anxieux chez les souris transgéniques mâles que femelles. Dans l'hippocampe, la région avec la densité de récepteur 5-HT1a la plus élevée dans le télencéphale, nous avons observé dans le stratum radiatum une complexité accrue des arborisations dendritiques des neurones pyramidaux du secteur CA1 chez les souris transgénique mâles mais pas chez les femelles. Cette observation nous a encouragés à initier cette étude sur les différences en fonction du genre utilisant les tests comportementaux en rapport avec les fonctions de l'hippocampe chez les souris déficientes pour le récepteur 5-HT1a.Testant nos souris avec des paradigmes associés à l'anxiété, nous avons reproduit les données originales montrant que les souris transgéniques mâles ont un phénotype plus sévère que les souris mâles sauvages, mais qu'aucune différence n'est observée entre les femelles sauvages et transgéniques. De même, les souris mâles déficientes pour le récepteur 5-HT1a sont handicapées dans les tests de conditionnement au stress avec des stimuli aversifs. Nous faisons l'hypothèse que l'augmentation de la complexité de l'arborisation dendritique et l'augmentation de la force du signal synaptique entres les régions CA3 et CA1 de l'hippocampe dans le stratum radiatum perturbe la propagation du signal nerveux qui conduit à l'hyperactivation des neurones du secteur CA1. Ceci conduit à une mémoire de stress altérée chez les souris mâles déficientes pour le récepteur 5-HT1a. Un mécanisme similaire dans l'hippocampe ventral contribue probablement aux différences en fonction du genre dans les tests pour le comportement de type anxieux qui ont été rapportés dans les études originales de 1998. Les mesures de protéine et de mRNA ont mis en évidence une augmentation de l'expression du récepteur NMDA contenant la sous- unité NR2B dans les souris déficientes pour le récepteur 5-HT1a à P15. Dans les cultures organotypiques d'hippocampe, nous avons commencé à disséquer les messagers secondaires à l'activation du récepteur 5-HT1a qui sont impliqués dans la régulation de la croissance dendritique des neurones pyramidaux pendant la période postnatale précoce. Nous avons démontré que les récepteurs NR2B sont en aval de l'activation du récepteur 5-HT1a et qu'ils sont impliqués dans l'accroissement du nombre de dendrites chez la souris mâle déficiente pour le récepteur 5-HT1a. Bien que la cascade de signalisation du récepteur 5-HT1a pour réguler les récepteurs NMDA contenant le NR2B ne soit pas établie, CaMKII est identifié comme un effecteur potentiel pour altérer le transport du récepteur NMDA à la synapse. D'autre part, Erk1/2 est probablement un messager en aval du NR2B du récepteur NMDA, et a été documenté comme suffisant pour réguler l'arborisation dendritique. L'augmentation de NR2B à la synapse des souris déficientes pour le récepteur 5-HT1a peut conduire à une augmentation de l'excitotoxicité dans les cellules. Nous avons observé une augmentation chez la souris déficiente pour le récepteur 5-HT1a de la mort cellulaire dans des tranches d'hippocampe stimulées, ce qui peut être en relation avec la réduction de la survie des neurones générés dans l'hippocampe de la souris mâle transgénique adulte par rapport à la souris mâle sauvage. De plus, la convergence de la signalisation du récepteur 5-HT1a sur la signalisation de la sous-unité NR2B du récepteur NMDA permet à l'oestrogène d'interférer avec sa voie de signalisation du récepteur de l'oestrogène couplé à une protéine G (GPER-1), ceci permettant à l'oestrogène de réduire la taille de l'arborisation des neurones pyramidaux de CA1 chez la femelle de la souris déficiente pour le récepteur 5-HT1a. En conclusion, nos observations suggèrent fortement qu'un mécanisme hormonal convergeant sur la voie de signalisation de la sous-unité NR2B du récepteur NMDA permet la normalisation de l'exubérance des dendrites des neurones CA1 de l'hippocampe et du comportement des souris femelles déficientes pour le récepteur 5-HT1a. Ceci donne une explication possible pour la différence en fonction du genre dans l'apparition de troubles mentaux avec les variations du récepteur 5-HT1a comme facteur de prédisposition important.
Resumo:
Previous studies have shown that women are more emotionally expressive than men. It is unclear, however, if women are also more susceptible to the emotional modulation of behavior imposed by an affective stimulus. To investigate this issue, we devised a task in which female subjects performed six sequential trials of visual target detection following the presentation of emotional (mutilation and erotic) or neutral pictures (domestic utensils and objects) and compared the data obtained in the present study with those described in a previous study with male subjects. The experiment consisted of three blocks of 24 pictures and each block had an approximate duration of 4 min. Our sample consisted of 36 subjects (age range: 18 to 26 years) and each subject performed all blocks. Trials following the presentation of mutilation pictures (283 ms) had significantly slower reaction times than those following neutral (270 ms) pictures. None of the trials in the "pleasant block" (271 ms) was significantly different from those in the "neutral block". The increase in reaction time observed in the unpleasant block may be related in part to the activation of motivational systems leading to an avoidance behavior. The interference effect observed in this study was similar to the pattern previously described for men. Thus, although women may be more emotionally expressive, they were not more reactive to aversive stimuli than men, as measured by emotional interference in a simple reaction time task.
Resumo:
The present study investigated the involvement of H(1) histaminegic receptor on the acquisition of inhibitory avoidance in Carassius auratus submitted to telencephalic ablation. The fish were submitted to telencephalic ablation 5 days before the experiment. The inhibitory avoidance procedure included 1 day for habituation, 3 days for training composed of 3 trials each (1st day: T1, T2, T3; 2nd day: 2T1, 2T2, 2T3; 3rd day: 3T1, 3T2, 3T3) and 1 day for test. On training days, the fish were placed in a white compartment, after 30 s the door was opened. When the fish crossed to a black compartment, a weight was dropped (aversive stimuli). Immediately after the third trial, on training days, the fish received, intraperitoneally, one of the pharmacological treatments (saline (N = 20), 8 (N = 12) or 16 (N = 13) µg/g chlorpheniramine, CPA). On the test day, the time to cross to the black compartment was determined. The latency of the saline group increased significantly only on the 3rd trial of the 2nd training day (mean ± SEM, T1 (50.40 ± 11.69), 2T3 (226.05 ± 25.01); ANOVA: P = 0.0249, Dunn test: P < 0.05). The group that received 8 µg/g CPA showed increased latencies from the 2nd training day until the test day (T1 (53.08 ± 17.17), 2T2 (197.75 ± 35.02), test (220.08 ± 30.98); ANOVA: P = 0.0022, Dunn test: P < 0.05)). These results indicate that CPA had a facilitating effect on memory. We suggest that the fish submitted to telencephalic ablation were able to learn due to the local circuits of the mesencephalon and/or diencephalon and that CPA interferes in these circuits, probably due an anxiolytic-like effect.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Resumo:
Here we report the effects of subchronic 3, 4-Methylenedioximethamphetamine (MDMA) on the elevated plus-maze, a widely used animal model of anxiety. Rats exposed to a mild chronic stress (MCS) protocol received intracerebroventricular microinjections of the selective serotonin reuptake inhibitor (SSRI) – fluoxetine (2.0ug/ul) or 3, 4-Methylenedioximethamphetamine (MDMA, 2.0ug/ul) for seven days. On the eighth day rats were tested in the elevated plus-maze. Our results showed that sub-chronic MDMA interacted with MCS leading to a decrease in anxiety-related behaviors including: percentage of open arms entries (F[2,26]=4.00; P=0.031), time spent in the open arms (F[2,26]=3.656; P=0.040) and time spent in the open arms extremities (F[2,26]=5.842; P=0.008). These results suggest a potential effect of MDMA in the reversion of the emotional significance of aversive stimuli.