938 resultados para automatic summarization


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automatic summarization of texts is now crucial for several information retrieval tasks owing to the huge amount of information available in digital media, which has increased the demand for simple, language-independent extractive summarization strategies. In this paper, we employ concepts and metrics of complex networks to select sentences for an extractive summary. The graph or network representing one piece of text consists of nodes corresponding to sentences, while edges connect sentences that share common meaningful nouns. Because various metrics could be used, we developed a set of 14 summarizers, generically referred to as CN-Summ, employing network concepts such as node degree, length of shortest paths, d-rings and k-cores. An additional summarizer was created which selects the highest ranked sentences in the 14 systems, as in a voting system. When applied to a corpus of Brazilian Portuguese texts, some CN-Summ versions performed better than summarizers that do not employ deep linguistic knowledge, with results comparable to state-of-the-art summarizers based on expensive linguistic resources. The use of complex networks to represent texts appears therefore as suitable for automatic summarization, consistent with the belief that the metrics of such networks may capture important text features. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers, as expected, but the increase in the Rouge score is only minor. These results reinforce the suitability of complex network methods for improving automatic summarizers in particular, and treating text in general. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the followed methodology to automatically generate titles for a corpus of questions that belong to sociological opinion polls. Titles for questions have a twofold function: (1) they are the input of user searches and (2) they inform about the whole contents of the question and possible answer options. Thus, generation of titles can be considered as a case of automatic summarization. However, the fact that summarization had to be performed over very short texts together with the aforementioned quality conditions imposed on new generated titles led the authors to follow knowledge-rich and domain-dependent strategies for summarization, disregarding the more frequent extractive techniques for summarization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While news stories are an important traditional medium to broadcast and consume news, microblogging has recently emerged as a place where people can dis- cuss, disseminate, collect or report information about news. However, the massive information in the microblogosphere makes it hard for readers to keep up with these real-time updates. This is especially a problem when it comes to breaking news, where people are more eager to know “what is happening”. Therefore, this dis- sertation is intended as an exploratory effort to investigate computational methods to augment human effort when monitoring the development of breaking news on a given topic from a microblog stream by extractively summarizing the updates in a timely manner. More specifically, given an interest in a topic, either entered as a query or presented as an initial news report, a microblog temporal summarization system is proposed to filter microblog posts from a stream with three primary concerns: topical relevance, novelty, and salience. Considering the relatively high arrival rate of microblog streams, a cascade framework consisting of three stages is proposed to progressively reduce quantity of posts. For each step in the cascade, this dissertation studies methods that improve over current baselines. In the relevance filtering stage, query and document expansion techniques are applied to mitigate sparsity and vocabulary mismatch issues. The use of word embedding as a basis for filtering is also explored, using unsupervised and supervised modeling to characterize lexical and semantic similarity. In the novelty filtering stage, several statistical ways of characterizing novelty are investigated and ensemble learning techniques are used to integrate results from these diverse techniques. These results are compared with a baseline clustering approach using both standard and delay-discounted measures. In the salience filtering stage, because of the real-time prediction requirement a method of learning verb phrase usage from past relevant news reports is used in conjunction with some standard measures for characterizing writing quality. Following a Cranfield-like evaluation paradigm, this dissertation includes a se- ries of experiments to evaluate the proposed methods for each step, and for the end- to-end system. New microblog novelty and salience judgments are created, building on existing relevance judgments from the TREC Microblog track. The results point to future research directions at the intersection of social media, computational jour- nalism, information retrieval, automatic summarization, and machine learning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation applies statistical methods to the evaluation of automatic summarization using data from the Text Analysis Conferences in 2008-2011. Several aspects of the evaluation framework itself are studied, including the statistical testing used to determine significant differences, the assessors, and the design of the experiment. In addition, a family of evaluation metrics is developed to predict the score an automatically generated summary would receive from a human judge and its results are demonstrated at the Text Analysis Conference. Finally, variations on the evaluation framework are studied and their relative merits considered. An over-arching theme of this dissertation is the application of standard statistical methods to data that does not conform to the usual testing assumptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse présente le résultat de plusieurs années de recherche dans le domaine de la génération automatique de résumés. Trois contributions majeures, présentées sous la forme d'articles publiés ou soumis pour publication, en forment le coeur. Elles retracent un cheminement qui part des méthodes par extraction en résumé jusqu'aux méthodes par abstraction. L'expérience HexTac, sujet du premier article, a d'abord été menée pour évaluer le niveau de performance des êtres humains dans la rédaction de résumés par extraction de phrases. Les résultats montrent un écart important entre la performance humaine sous la contrainte d'extraire des phrases du texte source par rapport à la rédaction de résumés sans contrainte. Cette limite à la rédaction de résumés par extraction de phrases, observée empiriquement, démontre l'intérêt de développer d'autres approches automatiques pour le résumé. Nous avons ensuite développé un premier système selon l'approche Fully Abstractive Summarization, qui se situe dans la catégorie des approches semi-extractives, comme la compression de phrases et la fusion de phrases. Le développement et l'évaluation du système, décrits dans le second article, ont permis de constater le grand défi de générer un résumé facile à lire sans faire de l'extraction de phrases. Dans cette approche, le niveau de compréhension du contenu du texte source demeure insuffisant pour guider le processus de sélection du contenu pour le résumé, comme dans les approches par extraction de phrases. Enfin, l'approche par abstraction basée sur des connaissances nommée K-BABS est proposée dans un troisième article. Un repérage des éléments d'information pertinents est effectué, menant directement à la génération de phrases pour le résumé. Cette approche a été implémentée dans le système ABSUM, qui produit des résumés très courts mais riches en contenu. Ils ont été évalués selon les standards d'aujourd'hui et cette évaluation montre que des résumés hybrides formés à la fois de la sortie d'ABSUM et de phrases extraites ont un contenu informatif significativement plus élevé qu'un système provenant de l'état de l'art en extraction de phrases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The huge amount of data available on the Web needs to be organized in order to be accessible to users in real time. This paper presents a method for summarizing subjective texts based on the strength of the opinion expressed in them. We used a corpus of blog posts and their corresponding comments (blog threads) in English, structured around five topics and we divided them according to their polarity and subsequently summarized. Despite the difficulties of real Web data, the results obtained are encouraging; an average of 79% of the summaries is considered to be comprehensible. Our work allows the user to obtain a summary of the most relevant opinions contained in the blog. This allows them to save time and be able to look for information easily, allowing more effective searches on the Web.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research studies the application of syntagmatic analysis of written texts in the language of Brazilian Portuguese as a methodology for the automatic creation of extractive summaries. The automation of abstracts, while linked to the area of natural language processing (PLN) is studying ways the computer can autonomously construct summaries of texts. For this we use as presupposed the idea that switch to the computer the way a language is structured, in our case the Brazilian Portuguese, it will help in the discovery of the most relevant sentences, and consequently build extractive summaries with higher informativeness. In this study, we propose the definition of a summarization method that automatically perform the syntagmatic analysis of texts and through them, to build an automatic summary. The phrases that make up the syntactic structures are then used to analyze the sentences of the text, so the count of these elements determines whether or not a sentence will compose the summary to be generated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EU]Testu bat koherente egiten duten arrazoiak ulertzea oso baliagarria da testuaren beraren ulermenerako, koherentzia eta koherentzia-erlazioak testu bat edo gehiago koherente diren ondorioztatzen laguntzen baitigu. Lan honetan gai bera duten testu ezberdinen arteko koherentziazko 3 Cross Document Structure Theory edo CST (Radev, 2000) erlazio aztertu eta sailkatu dira. Hori egin ahal izateko, euskaraz idatziriko gai berari buruzko testuak segmentatzeko eta beraien arteko erlazioak etiketatzeko gidalerroak proposatzen dira. 10 testuz osaturiko corpusa etiketatu da; horietako 3 cluster bi etiketatzailek aztertu dute. Etiketatzaileen arteko adostasunaren berri ematen dugu. Koherentzia-erlazioak garatzea oso garrantzitsua da Hizkuntzaren Prozesamenduko hainbat sistementzat, hala nola, informazioa erauzteko sistementzat, itzulpen automatikoarentzat, galde-erantzun sistementzat eta laburpen automatikoarentzat. Etorkizunean CSTko erlazio guztiak corpus esanguratsuan aztertuko balira, testuen arteko koherentzia- erlazioak euskarazko testuen prozesaketa automatikoa bideratzeko lehenengo pausua litzateke hemen egindakoa.