671 resultados para authigenic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Authigenic carbonate minerals are ubiquitous throughout the Late Permian coal measures of the Bowen Basin, Queensland, Australia. In the northern Bowen Basin, carbonates include the following assemblages: siderite I (delta O-18(SMOW) = +11.4 to + 17%, delta C-13(PDB) = - 5.3 to + 120), Fe-Mg calcite-ankerite-siderite II mineral association (delta O-18(SMOW) = +7.2 to + 10.20, delta C-13(PDB) = 10.9 to - 1.80 for ankerite) and a later calcite (delta O-18(SMOW) = +5.9 to + 14.60, delta C-13(PDB) = -11.4 to + 4.40). In the southern Bowen Basin, the carbonate phase consists only of calcite (delta O-18(SMOW) = +12.5 to + 14.80, delta C-13(PDB) = -19.4 to + 0.80), where it occurs extensively throughout all stratigraphic levels. Siderite I occurs in mudrocks and sandstones and predates all other carbonate minerals. This carbonate phase is interpreted to have formed as an early diagenetic mineral from meteoric waters under cold climate and reducing conditions. Fe-Mg calcite-ankerite-siderite Il occur in sandstones as replacement of volcanic rock fragments. Clay minerals (illite-smectite, chlorite and kaolinite) postdate Ca-Fe-Mg carbonates, and precipitation of the later calcite is associated with clay mineral formation. The Ca-Fe-Mg carbonates and later calcite of the northern Bowen Basin are regarded as having formed as a result of hydrothermal activity during the latest Triassic extensional tectonic event which affected this part of the basin, rather than deep burial diagenesis during the Middle to Late Triassic as previously reported. This hypothesis is based on the timing relationships of the authigenic mineral phases and the low delta O-18 values of ankerite and calcite, together with radiometric dating of illitic clays and recently published regional geological evidence. Following the precipitation of the Ca-Fe-Mg carbonates from strongly O-18-depleted meteoric-hydrothermal fluids, continuing fluid circulation and water-rock interaction resulted in dissolution of these carbonate phases as well as labile fragments of volcaniclastic rocks. Subsequently, the later calcite and day minerals precipitated from relatively evolved (O-18-enriched) fluids. The nearly uniform delta O-18 values of the southern Bowen Basin calcite have been attributed to very low water/rock ratio in the system, where the fluid isotropic composition was buffered by the delta O-18 values of rocks. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideration of the geosphere for isolation of nuclear waste has generated substantial interest in the origin, age, and movement of fl uids and gases in low-permeability rock formations. Here, we present profi les of isotopes, solutes, and helium in porewaters recovered from 860 m of Cambrian to Devonian strata on the eastern fl ank of the Michigan Basin. Of particular interest is a 240-m-thick, halite-mineralized, Ordovician shale and carbonate aquiclude, which hosts Br–-enriched, post-dolomitic brine (5.8 molal Cl) originating as evaporated Silurian seawater. Authigenic helium that has been accumulating in the aquiclude for more than 260 m.y. is found to be isolated from underlying allochthonous, 3He-enriched helium that originated from the rifted base of the Michigan Basin and the Canadian Shield. The Paleozoic age and immobility of the pore fl uids in this Ordovician aquiclude considerably strengthen the safety case for deep geological repositories, but also provide new insights into the origin of deep crustal brines and opportunities for research on other components of a preserved Paleozoic porewater system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have retrieved radiogenic hafnium (Hf) isotope compositions (ɛHf) from authigenic Fe–Mn oxyhydroxides of deep northwest Atlantic sediments deposited over the past 26 ka to investigate the oceanic evidence of changes in dissolved weathering inputs from NE America during the last deglaciation. The extraction of seawater-derived Hf isotopic compositions from Fe–Mn oxyhydroxides is not a standard procedure. Comparisons between the Al/Hf ratios and Hf isotopic compositions of the chemically extracted authigenic phase on the one hand, and those of the corresponding detrital fractions on the other, provide evidence that the composition of past seawater has been reliably obtained for most sampled depths with our leaching procedures. This is endorsed most strongly by data for a sediment core from 4250 m water depth at the deeper Blake Ridge, for which consistent replicates were produced throughout. The Hf isotopic composition of the most recent sample in this core also closely matches that of nearby present day central North Atlantic seawater. Comparison with previously published seawater Nd and Pb isotope compositions obtained on the same cores shows that both Hf and Pb were released incongruently during incipient chemical weathering, but responded differently to the deglacial retreat of the Laurentide Ice Sheet. Hafnium was released more congruently during peak glacial conditions of the Last Glacial Maximum (LGM) and changed to typical incongruent interglacial ɛHf signatures either during or shortly after the LGM. This indicates that some zircon-derived Hf was released to seawater during the LGM. Conversely, there is no clear evidence for an increase in the influence of weathering of Lu-rich mineral phases during deglaciation, possibly since relatively unradiogenic Hf contributions from feldspar weathering were superimposed. While the authigenic Pb isotope signal in the same marine sediment samples traced peak chemical weathering rates on continental North America during the transition to the Holocene a similar incongruent excursion is notably absent in the Hf isotope record. The early change towards more radiogenic ɛHf in relation to the LGM may provide direct evidence for the transition from a cold-based to a warm-based Laurentide Ice Sheet on the Atlantic sector of North America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic authigenic carbonates are classified according to origin of the carbonate carbon source using a complex methodology that includes methods of sedimentary petrography, mineralogy, isotope geochemistry, and microbiology. Mg-calcite (protodolomite) and aragonite predominate among the authigenic carbonates. All authigenic carbonates are depleted in 13C and enriched in 18O (in PDB system) that indicates biological fractionation of isotopes during carbonate formation. Obtained results show that authigenic carbonate formation is a biogeochemical (microbial) process, which involves carbon from ancient sedimentary rocks, abiogenic methane, and bicarbonate-ion of hydrothermal fluids into the modern carbon cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uranium (U) concentrations and activity ratios (d234U) of authigenic carbonates are sensitive recorders of different fluid compositions at submarine seeps of hydrocarbon-rich fluids ("cold seeps") at Hydrate Ridge, off the coast of Oregon, USA. The low U concentrations (mean: 1.3 ± 0.4 µg/g) and high 234U values (165-317 per mil) of gas hydrate carbonates reflect the influence of sedimentary pore water indicating that these carbonates were formed under reducing conditions below or at the seafloor. Their 230Th/234U ages span a time interval from 0.8 to 6.4 ka and cluster around 1.2 and 4.7 ka. In contrast, chemoherm carbonates precipitate from marine bottom water marked by relatively high U concentrations (mean: 5.2 ± 0.8 µg/g) and a mean d234U ratio of 166 ± 3 per mil. Their U isotopes reflect the d234U ratios of the bottom water being enriched in 234U relative to normal seawater. Simple mass balance calculations based on U concentrations and their corresponding d234U ratios reveal a contribution of about 11% of sedimentary pore water to the bottom water. From the U pore water flux and the reconstructed U pore water concentration a mean flow rate of about 147 ± 68 cm/a can be estimated. 230Th/234U ages of chemoherm carbonates range from 7.3 to 267.6 ka. 230Th/234U ages of two chemoherms (Alvin and SE-Knoll chemoherm) correspond to time intervals of low sealevel stands in marine isotope stages (MIS) 2, 4, 5, 6, 7 and 8. This observation indicates that fluid flow at cold seep sites sensitively reflects pressure changes of the hydraulic head in the sediments. The d18OPDB ratios of the chemoherm carbonates support the hypothesis of precipitation during glacial times. Deviations of the chemoherm d18O values from the marine d18O record can be interpreted as to reflect temporally and spatially varying bottom water and/or vent fluid temperatures during carbonate precipitation between 2.6 and 8.6°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Features of sedimentation of carbonate mineral associations in the northeastern shelf of Sakhalin and other regions of the Sea of Okhotsk are considered. Special attention is paid to correlation between carbonate neoformations and abnormal fluxes of methane. In bottom sediments with high contents of methane carbonate-sulfide associations occur, their generation has been influenced by gas (mostly methane) fields. Joint consideration of distribution of gas and geochemical fields and mineral associations in the Sea of Okhotsk allows to understand better a mechanism of mineral generation in bottom sediments, possible formation of ore accumulations, and to use them as indicators for prognosis of mineral resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral and chemical compositions of authigenic carbonates are studied by several methods in a sediment core collected in the axial zone of the Deryugin riftogenic basin. Manganese carbonates (kutnahorite, rhodochrosite) associated with manganiferous calcite, manganiferous pyrite, and nontronite are firstly identified in the Sea of Okhotsk. Manganese carbonates in Holocene diatomaceous ooze were presumably formed due to diagenetic transformation of sedimentary manganese hydroxides, organic matter, and biogenic silica, while those found in the underlying turbidites precipitated owing to the intermittent influx of endogenic fluids migrating along sand interbeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different generations of complex authigenic carbonates formed in siliceous muds (lithologic Unit IV) and hemipelagic clays (lithologic Unit V) of ODP Site 643, Leg 104 Norwegian Sea. The dominant phase in Unit IV is an early diagenetic Mn, Fe-calcite with a strong negative d13C ( -14 to -16 per mil) signature, and slightly negative d180 values. The strong negative d13C results from extensive incorporation of 12C-enriched CO2 derived from bacterial degradation of marine organic matter into early Mn, Fe - calcite cements. Concomitant framboidal pyrite precipitation and abundant SEM microtextures showing excellent preservation of delicate structures of fragile diatom valves by outpourings with early Mn-calcites strongly support their shallow burial formation before the onset of compaction. Later generations of authigenic mineralizations in lithologic Unit IV include minor amounts of a second generation of calcite with platy crystals, possibly precipitated along with opal-A dissolution, and finally opal-CT crystallization in deeper seated environments overgrowing earlier precipitates with films and lepispheres. The last mineralization is collophane (fluor apatite) forming amorphous aggregates and tiny hexagonal crystals. Authigenic mineral assemblages in lithologic Unit V consist of rhodochrosites, transitional rhodochrosite/manganosiderites, and apatite. A negative d13C ( -7.1 to -15.6 per mil) and a fluctuating d18O signal indicates that the micritic to sparitic rhodochrosites, transitional rhodochrosites/manganosiderites were formed at various burial depths. CO2 resulted from organic matter degradation in the lowermost sulfate reduction zone and from biogenic methane generation in the lowermost sediments, resulting in variable and negative d13C signals. The change in carbonate mineralogy reflects major compositional differences compared to sediments in Unit IV. Most prominent is an increase in altered ash as a primary sediment component and a sudden decrease of siliceous microfossils. Upward diffusion of cations, lowered salinities in pore waters, and elevated temperatures provide diagenetic environments favoring increased remobilization processes.