851 resultados para asymptotic solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient response of a CSTR containing porous catalyst pellets is analyzed theoretically using a matched asymptotic expansion technique. This singular perturbation technique leads directly to the conditions under which the minima of reservoir concentration occur. The existence of the minima may be used to estimate some inherent parameters of the catalyst pellet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a novel finite integral transform technique, the problem of diffusion and chemical reaction in a porous catalyst with general activity profile is investigated theoretically. Analytical expressions for the effectiveness factor are obtained for pth order and Michaelis-Menten kinetics. Perturbation methods are employed to provide useful asymptotic solutions for large or small values of Thiele modulus and Biot number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient response of an adsorbing or non-adsorbing tracer injected as step or square pulse input in a diffusion cell with two flowing streams across the pellet is theoretically investigated in this paper. Exact solutions and the asymptotic solutions in the time domain and in three different limits are obtained by using an integral transform technique and a singular perturbation technique, respectively. Parametric dependence of the concentrations in the top and bottom chambers can be revealed by investigating the asymptotic solutions, which are far simpler than their exact counterpart. In the time domain investigation, it is found that the bottom-chamber concentration is very sensitive to the value of the macropore effective diffusivity. Therefore this concentration could be used to extract diffusivity by fitting in the time domain. The bottom-chamber concentration is also sensitive to flow rate, pellet length chamber volume and the type of input (step and square input).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electromagnetic waves in suburban environment encounter multiple obstructions that shadow the signal. These waves are scattered and random in polarization. They take multiple paths that add as vectors at the portable device. Buildings have vertical and horizontal edges. Diffraction from edges has polarization dependent characteristics. In practical case, a signal transmitted from a vertically polarized high antenna will result in a significant fraction of total power in the horizontal polarization at the street level. Signal reception can be improved whenever there is a probability of receiving the signal in at least two independent ways or branches. The Finite-Difference Time-Domain (FDTD) method was applied to obtain the two and three-dimensional dyadic diffraction coefficients (soft and hard) of right-angle perfect electric conductor (PEC) wedges illuminated by a plane wave. The FDTD results were in good agreement with the asymptotic solutions obtained using Uniform Theory of Diffraction (UTD). Further, a material wedge replaced the PEC wedge and the dyadic diffraction coefficient for the same was obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.