986 resultados para asset model
Resumo:
Software assets are key output of the RAGE project and they can be used by applied game developers to enhance the pedagogical and educational value of their games. These software assets cover a broad spectrum of functionalities – from player analytics including emotion detection to intelligent adaptation and social gamification. In order to facilitate integration and interoperability, all of these assets adhere to a common model, which describes their properties through a set of metadata. In this paper the RAGE asset model and asset metadata model is presented, capturing the detail of assets and their potential usage within three distinct dimensions – technological, gaming and pedagogical. The paper highlights key issues and challenges in constructing the RAGE asset and asset metadata model and details the process and design of a flexible metadata editor that facilitates both adaptation and improvement of the asset metadata model.
Resumo:
Mestrado em Contabilidade Internacional
Resumo:
Complex non-linear interactions between banks and assets we model by two time-dependent Erdos-Renyi network models where each node, representing a bank, can invest either to a single asset (model I) or multiple assets (model II). We use a dynamical network approach to evaluate the collective financial failure -systemic risk- quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided into sub-periods, where within each sub-period banks may contiguously fail due to links to either i) assets or ii) other banks, controlled by two parameters, probability of internal failure p and threshold T-h ("solvency" parameter). The systemic risk decreases with the average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller T-h), the smaller the systemic risk -for some Th values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic ii) controlled by probability p(2) -a condition for the bank to be solvent (active) is stochasticthe- systemic risk decreases with decreasing p(2). We analyse the asset allocation for the U.S. banks. Copyright (C) EPLA, 2014
Resumo:
Não existe uma definição única de processo de memória de longo prazo. Esse processo é geralmente definido como uma série que possui um correlograma decaindo lentamente ou um espectro infinito de frequência zero. Também se refere que uma série com tal propriedade é caracterizada pela dependência a longo prazo e por não periódicos ciclos longos, ou que essa característica descreve a estrutura de correlação de uma série de longos desfasamentos ou que é convencionalmente expressa em termos do declínio da lei-potência da função auto-covariância. O interesse crescente da investigação internacional no aprofundamento do tema é justificado pela procura de um melhor entendimento da natureza dinâmica das séries temporais dos preços dos ativos financeiros. Em primeiro lugar, a falta de consistência entre os resultados reclama novos estudos e a utilização de várias metodologias complementares. Em segundo lugar, a confirmação de processos de memória longa tem implicações relevantes ao nível da (1) modelação teórica e econométrica (i.e., dos modelos martingale de preços e das regras técnicas de negociação), (2) dos testes estatísticos aos modelos de equilíbrio e avaliação, (3) das decisões ótimas de consumo / poupança e de portefólio e (4) da medição de eficiência e racionalidade. Em terceiro lugar, ainda permanecem questões científicas empíricas sobre a identificação do modelo geral teórico de mercado mais adequado para modelar a difusão das séries. Em quarto lugar, aos reguladores e gestores de risco importa saber se existem mercados persistentes e, por isso, ineficientes, que, portanto, possam produzir retornos anormais. O objetivo do trabalho de investigação da dissertação é duplo. Por um lado, pretende proporcionar conhecimento adicional para o debate da memória de longo prazo, debruçando-se sobre o comportamento das séries diárias de retornos dos principais índices acionistas da EURONEXT. Por outro lado, pretende contribuir para o aperfeiçoamento do capital asset pricing model CAPM, considerando uma medida de risco alternativa capaz de ultrapassar os constrangimentos da hipótese de mercado eficiente EMH na presença de séries financeiras com processos sem incrementos independentes e identicamente distribuídos (i.i.d.). O estudo empírico indica a possibilidade de utilização alternativa das obrigações do tesouro (OT’s) com maturidade de longo prazo no cálculo dos retornos do mercado, dado que o seu comportamento nos mercados de dívida soberana reflete a confiança dos investidores nas condições financeiras dos Estados e mede a forma como avaliam as respetiva economias com base no desempenho da generalidade dos seus ativos. Embora o modelo de difusão de preços definido pelo movimento Browniano geométrico gBm alegue proporcionar um bom ajustamento das séries temporais financeiras, os seus pressupostos de normalidade, estacionariedade e independência das inovações residuais são adulterados pelos dados empíricos analisados. Por isso, na procura de evidências sobre a propriedade de memória longa nos mercados recorre-se à rescaled-range analysis R/S e à detrended fluctuation analysis DFA, sob abordagem do movimento Browniano fracionário fBm, para estimar o expoente Hurst H em relação às séries de dados completas e para calcular o expoente Hurst “local” H t em janelas móveis. Complementarmente, são realizados testes estatísticos de hipóteses através do rescaled-range tests R/S , do modified rescaled-range test M - R/S e do fractional differencing test GPH. Em termos de uma conclusão única a partir de todos os métodos sobre a natureza da dependência para o mercado acionista em geral, os resultados empíricos são inconclusivos. Isso quer dizer que o grau de memória de longo prazo e, assim, qualquer classificação, depende de cada mercado particular. No entanto, os resultados gerais maioritariamente positivos suportam a presença de memória longa, sob a forma de persistência, nos retornos acionistas da Bélgica, Holanda e Portugal. Isto sugere que estes mercados estão mais sujeitos a maior previsibilidade (“efeito José”), mas também a tendências que podem ser inesperadamente interrompidas por descontinuidades (“efeito Noé”), e, por isso, tendem a ser mais arriscados para negociar. Apesar da evidência de dinâmica fractal ter suporte estatístico fraco, em sintonia com a maior parte dos estudos internacionais, refuta a hipótese de passeio aleatório com incrementos i.i.d., que é a base da EMH na sua forma fraca. Atendendo a isso, propõem-se contributos para aperfeiçoamento do CAPM, através da proposta de uma nova fractal capital market line FCML e de uma nova fractal security market line FSML. A nova proposta sugere que o elemento de risco (para o mercado e para um ativo) seja dado pelo expoente H de Hurst para desfasamentos de longo prazo dos retornos acionistas. O expoente H mede o grau de memória de longo prazo nos índices acionistas, quer quando as séries de retornos seguem um processo i.i.d. não correlacionado, descrito pelo gBm(em que H = 0,5 , confirmando- se a EMH e adequando-se o CAPM), quer quando seguem um processo com dependência estatística, descrito pelo fBm(em que H é diferente de 0,5, rejeitando-se a EMH e desadequando-se o CAPM). A vantagem da FCML e da FSML é que a medida de memória de longo prazo, definida por H, é a referência adequada para traduzir o risco em modelos que possam ser aplicados a séries de dados que sigam processos i.i.d. e processos com dependência não linear. Então, estas formulações contemplam a EMH como um caso particular possível.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
We derive an international asset pricing model that assumes local investorshave preferences of the type "keeping up with the Joneses." In aninternational setting investors compare their current wealth with that oftheir peers who live in the same country. In the process of inferring thecountry's average wealth, investors incorporate information from the domesticmarket portfolio. In equilibrium, this gives rise to a multifactor CAPMwhere, together with the world market price of risk, there existscountry-speciffic prices of risk associated with deviations from thecountry's average wealth level. The model performs signifficantly better, interms of explaining cross-section of returns, than the international CAPM.Moreover, the results are robust, both for conditional and unconditionaltests, to the inclusion of currency risk, macroeconomic sources of risk andthe Fama and French HML factor.
Resumo:
This thesis discusses the basic problem of the modern portfolio theory about how to optimise the perfect allocation for an investment portfolio. The theory provides a solution for an efficient portfolio, which minimises the risk of the portfolio with respect to the expected return. A central feature for all the portfolios on the efficient frontier is that the investor needs to provide the expected return for each asset. Market anomalies are persistent patterns seen in the financial markets, which cannot be explained with the current asset pricing theory. The goal of this thesis is to study whether these anomalies can be observed among different asset classes. Finally, if persistent patterns are found, it is investigated whether the anomalies hold valuable information for determining the expected returns used in the portfolio optimization Market anomalies and investment strategies based on them are studied with a rolling estimation window, where the return for the following period is always based on historical information. This is also crucial when rebalancing the portfolio. The anomalies investigated within this thesis are value, momentum, reversal, and idiosyncratic volatility. The research data includes price series of country level stock indices, government bonds, currencies, and commodities. The modern portfolio theory and the views given by the anomalies are combined by utilising the Black-Litterman model. This makes it possible to optimise the portfolio so that investor’s views are taken into account. When constructing the portfolios, the goal is to maximise the Sharpe ratio. Significance of the results is studied by assessing if the strategy yields excess returns in a relation to those explained by the threefactormodel. The most outstanding finding is that anomaly based factors include valuable information to enhance efficient portfolio diversification. When the highest Sharpe ratios for each asset class are picked from the test factors and applied to the Black−Litterman model, the final portfolio results in superior riskreturn combination. The highest Sharpe ratios are provided by momentum strategy for stocks and long-term reversal for the rest of the asset classes. Additionally, a strategy based on the value effect was highly appealing, and it basically performs as well as the previously mentioned Sharpe strategy. When studying the anomalies, it is found, that 12-month momentum is the strongest effect, especially for stock indices. In addition, a high idiosyncratic volatility seems to be positively correlated with country indices on stocks.
Resumo:
Over time the demand for quantitative portfolio management has increased among financial institutions but there is still a lack of practical tools. In 2008 EDHEC Risk and Asset Management Research Centre conducted a survey of European investment practices. It revealed that the majority of asset or fund management companies, pension funds and institutional investors do not use more sophisticated models to compensate the flaws of the Markowitz mean-variance portfolio optimization. Furthermore, tactical asset allocation managers employ a variety of methods to estimate return and risk of assets, but also need sophisticated portfolio management models to outperform their benchmarks. Recent development in portfolio management suggests that new innovations are slowly gaining ground, but still need to be studied carefully. This thesis tries to provide a practical tactical asset allocation (TAA) application to the Black–Litterman (B–L) approach and unbiased evaluation of B–L models’ qualities. Mean-variance framework, issues related to asset allocation decisions and return forecasting are examined carefully to uncover issues effecting active portfolio management. European fixed income data is employed in an empirical study that tries to reveal whether a B–L model based TAA portfolio is able outperform its strategic benchmark. The tactical asset allocation utilizes Vector Autoregressive (VAR) model to create return forecasts from lagged values of asset classes as well as economic variables. Sample data (31.12.1999–31.12.2012) is divided into two. In-sample data is used for calibrating a strategic portfolio and the out-of-sample period is for testing the tactical portfolio against the strategic benchmark. Results show that B–L model based tactical asset allocation outperforms the benchmark portfolio in terms of risk-adjusted return and mean excess return. The VAR-model is able to pick up the change in investor sentiment and the B–L model adjusts portfolio weights in a controlled manner. TAA portfolio shows promise especially in moderately shifting allocation to more risky assets while market is turning bullish, but without overweighting investments with high beta. Based on findings in thesis, Black–Litterman model offers a good platform for active asset managers to quantify their views on investments and implement their strategies. B–L model shows potential and offers interesting research avenues. However, success of tactical asset allocation is still highly dependent on the quality of input estimates.