992 resultados para assemble load profile


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are varieties of physical and behavioral factors to determine energy demand load profile. The attainment of the optimum mix of measures and renewable energy system deployment requires a simple method suitable for using at the early design stage. A simple method of formulating load profile (SMLP) for UK domestic buildings has been presented in this paper. Domestic space heating load profile for different types of houses have been produced using thermal dynamic model which has been developed using thermal resistant network method. The daily breakdown energy demand load profile of appliance, domestic hot water and space heating can be predicted using this method. The method can produce daily load profile from individual house to urban community. It is suitable to be used at Renewable energy system strategic design stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to forecast the hourly and daily consumption in households. The methodology was validated for households in Lisbon region, Portugal. The paper shows that the forecast tool allows obtaining satisfactory results for forecasting. Models of demand response allow the support of consumer’s decision in exchange for an economic benefit by the redefinition of load profile or changing the appliance consumption period. It is also in the interest of electric utilities to take advantage of these changes, particularly when consumers have an action on the demand-side management or production. Producers need to understand the load profile of households that are connected to a smart grid, to promote a better use of energy, as well as optimize the use of micro-generation from renewable sources, not only to delivering to the network but also in self-consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to forecast the hourly and daily consumption in households assisted by cyber physical systems. The methodology was validated using a database of consumption of a set of 93 domestic consumers. Forecast tools used were based on Fast Fourier Series and Generalized Reduced Gradient. Both tools were tested and their forecast results were compared. The paper shows that both tools allow obtaining satisfactory results for energy consumption forecasting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Para a diminuição da dependência energética de Portugal face às importações de energia, a Estratégia Nacional para a Energia 2020 (ENE 2020) define uma aposta na produção de energia a partir de fontes renováveis, na promoção da eficiência energética tanto nos edifícios como nos transportes com vista a reduzir as emissões de gases com efeito de estufa. No campo da eficiência energética, o ENE 2020 pretende obter uma poupança energética de 9,8% face a valores de 2008, traduzindo-se em perto de 1800 milhões de tep já em 2015. Uma das medidas passa pela aposta na mobilidade eléctrica, onde se prevê que os veículos eléctricos possam contribuir significativamente para a redução do consumo de combustível e por conseguinte, para a redução das emissões de CO2 para a atmosfera. No entanto, esta redução está condicionada pelas fontes de energia utilizadas para o abastecimento das baterias. Neste estudo foram determinados os consumos de combustível e as emissões de CO2 de um veículo de combustão interna adimensional representativo do parque automóvel. É também estimada a previsão de crescimento do parque automóvel num cenário "Business-as-Usual", através dos métodos de previsão tecnológica para o horizonte 2010-2030, bem como cenários de penetração de veículos eléctricos para o mesmo período com base no método de Fisher- Pry. É ainda analisado o impacto que a introdução dos veículos eléctricos tem ao nível dos consumos de combustível, das emissões de dióxido de carbono e qual o impacto que tal medida terá na rede eléctrica, nomeadamente no diagrama de carga e no nível de emissões de CO2 do Sistema Electroprodutor Nacional. Por fim, é avaliado o impacto dos veículos eléctricos no diagrama de carga diário português, com base em vários perfis de carga das baterias. A introdução de veículos eléctricos em Portugal terá pouca expressão dado que, no melhor dos cenários haverão somente cerca de 85 mil unidades em circulação, no ano de 2030. Ao nível do consumo de combustíveis rodoviários, os veículos eléctricos poderão vir a reduzir o consumo de gasolina até 0,52% e até 0,27% no consumo de diesel, entre 2010 e 2030, contribuindo ligeiramente uma menor dependência energética externa. Ao nível do consumo eléctrico, o abastecimento das baterias dos veículos eléctricos representará até 0,5% do consumo eléctrico total, sendo que parte desse abastecimento será garantido através de centrais de ciclo combinado a gás natural. Apesar da maior utilização deste tipo de centrais térmicas para produção de energia, tanto para abastecimento das viaturas eléctricas, como para o consumo em geral, verifica-se que em 2030, o nível de emissões do sistema electroprodutor será cerca de 46% inferior aos níveis registados em 2010, prevendo-se que atinja as 0,163gCO2/kWh produzido pelo Sistema Electroprodutor Nacional devido à maior quota de produção das fontes de energia renovável, como o vento, a hídrica ou a solar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä työssä tarkastellaan taajuusmuuttajan vanhenemista syklisissä käytöissä puolijohdetehokomponenttien osalta. Laitteiden vikaantumisprosessien analysoimiseksi työssä suunnitellaan syklinen kestotestausjärjestelmä, joka mahdollistaa useamman taajuusmuuttajan yhtäaikaisen vanhentamisen. Jaksottaisesti toistuvat kuormitussyklit rasittavat termomekaanisesti taajuusmuuttajan tehomoduulin sisäisiä rakenteita suurten lämpötilavaihtelujen johdosta. Teoriaosuuden pääpaino kohdistuu puolijohdetehokomponenttien rakenteeseen, vikaantumisprosesseihin ja eliniän kartoittamiseen. Työssä käydään läpi yleisimpien pienijännitteisten moottorinohjausinverttereiden tehomoduulien mekaaniset rakenteet, tyypillisemmät syklisestä kuormituksesta johtuvat vikaantumisprosessit sekä puolijohdetehokomponenttivalmistajien käyttämät syklisen eliniän testausmenetelmät. Loppuosassa työtä suunnitellaan taajuusmuuttajan syklinen kestotestausjärjestelmä laitteiden keinotekoista vanhentamista varten. Testausjärjestelmällä voidaan kuormittaa useampaa taajuusmuuttajaa vuorottain mielivaltaisella kuormitusvirtaprofiililla. Laitteita vanhennettiin kaksi testierää kuormittamalla niitä jaksottaisesti hissikäytön tyypillisellä kuormitusprofiililla. Puolijohdetehokomponentin vanhenemisen edistystä seurattiin termisen impedanssiketjun mittausmenetelmällä, joka perustuu IGBT:n kollektoriemitterijännitteen lämpötilariippuvuuteen. Testilaitteiden puolijohdetehokomponentit hajosivat syklisen eliniän päättymiseen teoriassa esitettyjen vikaantumisprosessien seurauksesta. Tehomoduulien vika-analyysi osoittaa syklisen kestotestausjärjestelmän soveltuvaksi menetelmäksi tutkia erilaisten kuormitusprofiilien vaikutusta taajuusmuuttajan vanhenemiseen.