986 resultados para aspahlt binder
Resumo:
Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of electronic waste plastics were used in this investigation: acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). This research investigation utilized two approaches for incorporating electronic waste plastics into asphalt pavement materials. The first approach was blending and integrating recycled and processed electronic waste powders directly into asphalt mixtures and binders; and the second approach was to chemically treat recycled and processed electronic waste powders with hydro-peroxide before blending into asphalt mixtures and binders. The chemical treatment of electronic waste (e-waste) powders was intended to strengthen molecular bonding between e-waste plastics and asphalt binders for improved low and high temperature performance. Superpave asphalt binder and mixture testing techniques were conducted to determine the rheological and mechanical performance of the e-waste modified asphalt binders and mixtures. This investigation included a limited emissions-performance assessment to compare electronic waste modified asphalt pavement mixture emissions using SimaPro and performance using MEPDG software. Carbon dioxide emissions for e-waste modified pavement mixtures were compared with conventional asphalt pavement mixtures using SimaPro. MEPDG analysis was used to determine rutting potential between the various e-waste modified pavement mixtures and the control asphalt mixture. The results from this investigation showed the following: treating the electronic waste plastics delayed the onset of tertiary flow for electronic waste mixtures, electronic waste mixtures showed some improvement in dynamic modulus results at low temperatures versus the control mixture, and tensile strength ratio values for treated e-waste asphalt mixtures were improved versus the control mixture.
Resumo:
Background and Aims: Calcium-containing phosphate binders have been shown to increase the progression of vascular calcification in hemodialysis patients. This is a prospective study that compares the effects of calcium acetate and sevelamer on coronary calcification (CAC) and bone histology. Methods: 101 hemodialysis patients were randomized for each phosphate binder and submitted to multislice coronary tomographies and bone biopsies at entry and 12 months. Results: The 71 patients who concluded the study had similar baseline characteristics. On follow-up, the sevelamer group had higher levels of intact parathyroid hormone (498 +/- 352 vs. 326 +/- 236 pg/ml, p = 0.017), bone alkaline phosphatase (38 +/- 24 vs. 28 +/- 15 U/l, p = 0.03) and deoxypyridinoline (135 +/- 107 vs. 89 +/- 71 nmol/l, p = 0.03) and lower LDL cholesterol (74 +/- 21 vs. 91 +/- 28 mg/dl, p = 0.015). Phosphorus (5.8 +/- 1.0 vs. 6 +/- 1.0 mg/dl, p = 0.47) and calcium (1.27 +/- 0.07 vs. 1.23 +/- 0.08 mmol/l, p = 0.68) levels did not differ between groups. CAC progression (35 vs. 24%, p = 0.94) and bone histological diagnosis at baseline and 12 months were similar in both groups. Patients of the sevelamer group with a high turnover at baseline had an increase in bone resorption (eroded surface, ES/BS = 9.0 +/- 5.9 vs. 13.1 +/- 9.5%, p = 0.05), whereas patients of both groups with low turnover at baseline had an improvement in bone formation rate (BFR/BS = 0.015 +/- 0.016 vs. 0.062 +/- 0.078, p = 0.003 for calcium and 0.017 +/- 0.016 vs. 0.071 +/- 0.084 mu m(3)/mu m(2)/day, p = 0.010 for sevelamer). Conclusions: There was no difference in CAC progression or changes in bone remodeling between the calcium and the sevelamer groups. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Organic binders are used in premixes for powder metallurgy applications to prevent dusting and segregation. This is a particular problem for aluminium powder metallurgy because the dust is a potential safety hazard. The binder must also burn out completely at low temperatures in an inert environment and not react with the metal powders. It is demonstrated that cellulose acetate, polyvinyl acetate and polyvinyl alcohol are effective dedusting agents but they react with the metal powders during sintering and decrease the sintered density. Paraffin wan is an effect dedusting agent that provided die wall lubricity, does not interfere with sintering and increases tensile strength and ductility.
Resumo:
Cement & Concrete Composites 45 (2014) 264–271
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.
Resumo:
Road pavements are very important infrastructures for the Society, but they can cause serious environmental impacts during construction, operation and rehabilitation phases. Thus, it is essential to develop surface paving solutions that promote not only the durability but also a comfortable and safe use. In fact, this work aims to study the properties of new opengraded mixtures for surface layers produced with plastic wastes. First, HDPE and EVA wastes were used as bitumen modifiers, and then another plastic waste (PEX) replaced part of the aggregates. After studying the modified binders, the open-graded mixtures were designed, and then they were tested concerning their particle loss, rutting resistance, surface texture and damping effect. It was concluded that both ways of using the plastic wastes can improve the mechanical and functional properties of the open-graded mixtures related to the pavement performance.
Resumo:
Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.
Resumo:
Oxidation is the primary cause of long-term aging in asphalt pavements. As a pavement oxidizes, it stiffens and can eventually crack. The use of an antioxidant as a performance enhancer in an asphalt binder could delay aging, thus increasing the life of an asphalt pavement. Lignin is a highly available and well-studied antioxidant. A wet-mill ethanol plant produces several co-products, some of which contain lignin. The use of lignin from ethanol production could provide a benefit to asphalt pavements and also give more value to the co-products. The following research examined the effects of lignin on asphalt pavements. Three lignin-containing co-products were separately combined with four asphalt binders in varying amounts to determine the optimum amount of co-product that would provide the greatest benefit to the asphalt binders. The asphalt binder and co-product blends were evaluated according to Superpave specifications and performance graded on a continuous scale. The data indicated a stiffening effect on the binder caused by the addition of the co-products. The more a co-product was added, the more a binder stiffened. Binder stiffening benefited the high temperature properties and the low temperature binder properties were negatively affected. However, the low temperature stiffening effects were small and in many cases not significant. The co-products had an overall effect of widening the temperature range of the binders. This result suggests some antioxidant activity between the binder and the lignin. Testing with a fourth co-product with no lignin supported the idea that lignin acts as an antioxidant. The samples with no lignin aged significantly more than the samples with lignin. Infrared spectrometry also supported the idea that lignin acts as an antioxidant by observing decreases in some oxidative aging products.
Resumo:
This paper provides information about the synthesis and mechanical properties of geopolymers based on fluid catalytic cracking catalyst residue (FCC). FCC was alkali activated with solutions containing different SiO2/Na2O ratios. The microstructure and mechanical properties were analysed by using several instrumental techniques. FCC geopolymers are mechanically stable, yielding compressive strength about 68 MPa when mortars are cured at 65 degrees C during 3 days. The results confirm the viability of producing geopolymers based on FCC. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thermal decomposition kinetics of solid rocket propellants based on hydroxyl-terminated polybutadiene-HTPB binder was studied by applying the Arrhenius and Flynn-Wall-Ozawa's methods. The thermal decomposition data of the propellant samples were analyzed by thermogravimetric analysis (TG/DTG) at different heating rates in the temperature range of 300-1200 K. TG curves showed that the thermal degradation occurred in three main stages regardless of the plasticizer (DOA) raw material, the partial HTPB/IPDI binder and the total ammonium perchlorate decompositions. The kinetic parameters E-a (activation energy) and A (pre-exponential factor) and the compensation parameter (S-p) were determined. The apparent activation energies obtained from different methods showed a very good agreement.
Resumo:
The main goal of this work is to demonstrate that the use of recycled material originated from SiC ceramics is viable. These ceramics were produced by commercial starch consolidation process. Before calcination stage, surplus of these materials always appears. This surplus is rich in SiC and starch. Samples were made by material previously milled in automatic mortar and sieved (100 Tyler). Later, 10% of distilled water was added to the material and the mixture was pressed at 40 MPa. In order to characterize the ceramic, three point flexural test were made, according to the ASTM C1161/94 norm. The results were analyzed by Weibull statistical method. Apparent density and porosity measures also were made, according to ASTM C20/87 norm. A verification of the surface was made in the fracture area by the depth from focus method and SEM image analysis. The results showed that the recycling process is fully viable, being a good economic option and reduce possible pollutant effect to the environment.
Resumo:
Aflatoxins (AF) and fumonisins (FU) are a major problem faced by poultry farmers, leading to huge economic losses. This experiment was conducted to determine the effects of AF (1 mg/kg of feed) and FU (25 mg/kg of feed), singly or in combination, on the lipid metabolism in commercial layers and investigate the efficacy of a commercial binder (2 kg/t of feed) on reducing the toxic effects of these mycotoxins. A total of 168 Hisex Brown layer hens, 37 wk of age, were randomized into a 3 × 2 + 1 factorial arrangement (3 diets with no binder containing AF, FU, and AF+FU; 3 diets with binder containing AF, FU, and AF+FU; and a control diet with no mycotoxins and binders), totaling 7 treatments. The hens contaminated with AF showed the characteristic effects of aflatoxicosis, such as a yellow liver, resulting from the accumulation of liver fat, lower values of plasma very low-density lipoprotein and triglycerides, and higher relative weight of the kidneys and liver. Hepatotoxic and nephrotoxic effects of FU were not observed in this study. On the other hand, the FU caused a reduction in small intestine length and an increase in abdominal fat deposition. The glucan-based binder prevented some of the deleterious effects of these mycotoxins, particularly the effects of AF on hepatic lipid metabolism, kidney relative weight, and FU in the small intestine. © 2013 Poultry Science Association Inc.
Resumo:
Introduction: The purpose of this study was to evaluate the biocompatibility of calcium aluminate cement (EndoBinder) in subcutaneous tissue of rats. Methods: Fifteen rats, weighing 300 g, were separated into 3 groups (n = 5) in accordance with the time of death (7, 21, 42 days). Two incisions were made in the dorsal subcutaneous tissue of each rat in which were implanted 2 polyethylene tubes filled with the test materials, Endo Binder (EB) and Grey MTA (GMTA). The external tube walls were considered the negative control group (CG). After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group, at each time interval of analysis. Results: From the morphologic and morphometric analyses by using a score of (0-3) (50, 100, and 400x), results showed absence of inflammatory reaction (0) for EB after 42 days. However, for GMTA, a slight inflammatory reaction (1) was observed after 42 days, which means the persistence of a chronic inflammatory process. When compared with CG, tissue reaction ranging from discrete (1-7 days) to absent (0-42 days) was observed. Conclusions: EndoBinder presented satisfactory tissue reaction; it was biocompatible when tested in subcutaneous tissue of rats. (J Endod 2012;38:367-371)