956 resultados para aromatic carbonyl compound


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is an introduction to our attempts to evaluate the coordination behaviour of a few compounds of our interest. Semicarbazones and their metal complexes have been an active area of research during the past years because of the beneficial biological activities of these substances. Tridentate NNO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis and characterization are well desirable. Hence, we decided to develop a research program aimed at the synthesis and characterization of novel semicarbazones derived from 2-benzoylpyridine and 2-acetylpyridine and their transition metal complexes. In addition to various physicochemical methods of analysis, single crystal X—Ray diffraction studies were also used for the characterization of the complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a technetium labeling technology based on a new organometallic chemistry, which involves simple mixing of the novel reagent, a 99m Tc(I)-carbonyl compound, with a His-tagged recombinant protein. This method obviates the labeling of unpaired engineered cysteines, which frequently create problems in large-scale expression and storage of disulfide-containing proteins. In this study, we labeled antibody single-chain Fv fragments to high specific activities (90 mCi/mg), and the label was very stable to serum and all other challenges tested. The pharmacokinetic characteristics were indistinguishable from iodinated scFv fragments, and thus scFV fragments labeled by the new method will be suitable for biodistribution studies. This novel labeling method should be applicable not only to diagnostic imaging with 99mTc, but also to radioimmunotherapy approaches with 186/188 Re, and its use can be easily extended to almost any recombinant protein or synthetic peptide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y) was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2008-2013. The thesis brings to light, our attempts to evaluate the coordination behavior of some compounds of interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of copper complexes with halides and pseudohalides. In addition to single crystal X-ray diffraction studies, various physico-chemical methods of analysis were also used for the characterization of the complexes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irradiation of argon matrices at 12 K containing hydrogen peroxide and tetrachloroethene using the output from a medium-pressure mercury lamp gives rise to the carbonyl compound trichloroacetyl chloride (CCl3CClO). Similarly trichloroethene gives dichloroacetyl chloride ( CCl2HCClO) - predominantly in the gauche form - under the same conditions. It appears that the reaction is initiated by homolysis of the O-O bond of H2O2 to give OH radicals, one of which adds to the double bond of an alkene molecule. The reaction then proceeds by abstraction of the H atom of the hydroxyl group and Cl-atom migration. This mechanism has been explored by the use of DFT calculations to back up the experimental findings. The mechanism is analogous to that shown by the simple hydrocarbon alkenes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n-Butanethiol is generated in situ by sequential addition of n-butyllithium and water to elemental sulfur. The n-butanethiol formed was reacted with electron-deficient olefines to give Michael-type addition products in good yields. The method avoids the manipulation of the bad-smelling n-butanethiol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer is one of the most hazardous effects to human health caused by the exposition to chemical agents. The search for new technological solutions in the industrial field led to a rapid increase in the productive sector, causing the workers to be exposed to millions of potentially toxic agents, substances potentially harmful to health. This study presents the mutagenic activity of sweepings from a sock and lingerie factory in Araraquara-Brazil, assayed with Salmonella typhimurium. All the extracts from the factory had mutagenic on activity the YG1024 strain, which is extremely sensitive to detect the mutagenic activity of the arilhydroxilamines, nitroarenes and aromatic amines. The extracts were non-mutagenics for the strains TA100 and TA98. The analysis of the mutagenicity of industrial residues is highly important because employees that participate in the production are directly exposed to those agents, as well as to the environment where the garbage is deposited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone, first discovered in the mid 1800’s, is a triatomic allotrope of oxygen that is a powerful oxidant. For over a century, research has been conducted into the synthetic application and mechanism of reactions of ozone with organic compounds. One of the major areas of interest has been the ozonolysis of alkenes. The production of carbonyl compounds is the most common synthetic application of ozonolysis. The generally accepted mechanism developed by Rudolf Criegee for this reaction involves the 1,3-electrocyclic addition of ozone to the π bond of the alkene to form a 1,2,3-trioxolane or primary ozonide. The primary ozonide is unstable at temperatures above -100 °C and undergoes cycloreversion to produce the carbonyl oxide and carbonyl intermediates. These intermediates then recombine in another 1,3-electrocyclic addition step to form the 1,2,4-trioxolane or final ozonide. While the final ozonide is often isolable, most synthetic applications of ozonolysis require a subsequent reductive or oxidative step to form the desired carbonyl compound. During investigations into the nucleophilic trapping of the reactive carbonyl oxide, it was discovered that when amines were used as additives, an increased amount of reaction time was required in order to consume all of the starting material. Surprisingly, significant amounts of aldehydes and a suppression of ozonide formation also occurred which led to the discovery that amine N-oxides formed by the ozonation of the amine additives in the reaction were intercepting the carbonyl oxide. From the observed production of aldehydes, our proposed mechanism for the in situ reductive ozonolysis reaction with amine N-oxides involves the nucleophilic trapping of the carbonyl oxide intermediate to produce a zwitterionic adduct that fragments into 1O2, amine and the carbonyl thereby avoiding the formation of peroxidic intermediates. With the successful total syntheses of peroxyacarnoates A and D by Dr. Chunping Xu, the asymmetric total synthesis of peroxyplakorate A3 was investigated. The peroxyplakoric acids are cyclic peroxide natural products isolated from the Plakortis species of marine sponge that have been found to exhibit activity against malaria, cancer and fungi. Even though the peroxyplakorates differ from the peroxyacarnoates in the polyunsaturated tail and the head group, the lessons learned from the syntheses of the peroxyacarnoates have proven to be valuable in the asymmetric synthesis of peroxyplakorate A3. The challenges for the asymmetric synthesis of peroxyplakorate A3 include the stereospecific formation of the 3-methoxy-1,2-dioxane core with a propionate head group and the introduction of oxidation sensitive dienyl tail in the presence of a reduction sensitive 1,2-dioxane core. It was found that the stereochemistry of two of the chiral centers could be controlled by an anti-aldol reaction of a chiral propionate followed by the stereospecific intramolecular cyclization of a hydroperoxyacetal. The regioselective ozonolysis of a 1,2-disubstituted alkene in the presence of a terminal alkyne forms the required hydroperoxyacetal as a mixture of diastereomers. Finally, the dienyl tail is introduced by a hydrometallation/iodination of the alkyne to produce a vinyl iodide followed by a palladium catalyzed coupling reaction. While the coupling reaction was unsuccessful in these attempts, it is still believed that the intramolecular cyclization to introduce the 1,2-dioxane core could prove to be a general solution to many other cyclic peroxides natural products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called “French paradox,” (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively. Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Syzygium anisatum (formerly Backhousia anisata and Anetholea anisata) is an Australian rainforest tree with leaves that produce an essential oil (EO) that has the characteristic aroma of aniseed. It is referred to as aniseed myrtle or anise myrtle in the trade and the fresh and dried leaves of this plant are used as a herb in culinary applications. The EO is extracted by steam distillation of the leaves and the major aromatic volatile compound is anethole. The EO has broad spectrum antimicrobial activity but is more effective against bacteria than fungi. Indigenous Australians have used anise myrtle for its medicinal values and in recent times it has been used as a flavoring agent by the food and beverage industry. This chapter covers the use of anise myrtle EO in food and agricultural applications, botanical aspects, and chemical composition.