41 resultados para archimax copulas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As instituições financeiras são obrigadas por acordos internacionais, como o Acordo de Basiléia, a avaliar o risco de mercado ao qual a instituição está propensa de forma a evitar possíveis contaminações de desastres financeiros em seu patrimônio. Com o intuito de capturar tais fenômenos, surge a necessidade de construir modelos que capturem com mais acurácia movimentos extremos das séries de retornos. O trabalho teve como principal objetivo aplicar a Teoria do Valor Extremo juntamente com Copulas na estimação de quantis extremos para o VaR. Ele utiliza técnicas de simulação de Monte Carlo, Teoria do Valor Extremo e Cópulas com distribuições gaussianas e t. Em contrapartida, as estimativas produzidas serão comparadas com as de um segundo modelo, chamado de simulação histórica de Monte Carlo filtrada, mais conhecida como filtered historical simulation (FHS). As técnicas serão aplicadas a um portfólio de ações de empresas brasileiras.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is independent from its conditioning variables. In this paper, we relax this assumption by discovering the latent functions that specify the shape of a conditional copula given its conditioning variables We learn these functions by following a Bayesian approach based on sparse Gaussian processes with expectation propagation for scalable, approximate inference. Experiments on real-world datasets show that, when modeling all conditional dependencies, we obtain better estimates of the underlying copula of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multivariate analysis on flood variables is needed to design some hydraulic structures like dams, as the complexity of the routing process in a reservoir requires a representation of the full hydrograph. In this work, a bivariate copula model was used to obtain the bivariate joint distribution of flood peak and volume, in order to know the probability of occurrence of a given inflow hydrograph. However, the risk of dam overtopping is given by the maximum water elevation reached during the routing process, which depends on the hydrograph variables, the reservoir volume and the spillway crest length. Consequently, an additional bivariate return period, the so-called routed return period, was defined in terms of risk of dam overtopping based on this maximum water elevation obtained after routing the inflow hydrographs. The theoretical return periods, which give the probability of occurrence of a hydrograph prior to accounting for the reservoir routing, were compared with the routed return period, as in both cases hydrographs with the same probability will draw a curve in the peak-volume space. The procedure was applied to the case study of the Santillana reservoir in Spain. Different reservoir volumes and spillway lengths were considered to investigate the influence of the dam and reservoir characteristics on the results. The methodology improves the estimation of the Design Flood Hydrograph and can be applied to assess the risk of dam overtopping

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La adecuada estimación de avenidas de diseño asociadas a altos periodos de retorno es necesaria para el diseño y gestión de estructuras hidráulicas como presas. En la práctica, la estimación de estos cuantiles se realiza normalmente a través de análisis de frecuencia univariados, basados en su mayoría en el estudio de caudales punta. Sin embargo, la naturaleza de las avenidas es multivariada, siendo esencial tener en cuenta características representativas de las avenidas, tales como caudal punta, volumen y duración del hidrograma, con el fin de llevar a cabo un análisis apropiado; especialmente cuando el caudal de entrada se transforma en un caudal de salida diferente durante el proceso de laminación en un embalse o llanura de inundación. Los análisis de frecuencia de avenidas multivariados han sido tradicionalmente llevados a cabo mediante el uso de distribuciones bivariadas estándar con el fin de modelar variables correlacionadas. Sin embargo, su uso conlleva limitaciones como la necesidad de usar el mismo tipo de distribuciones marginales para todas las variables y la existencia de una relación de dependencia lineal entre ellas. Recientemente, el uso de cópulas se ha extendido en hidrología debido a sus beneficios en relación al contexto multivariado, permitiendo superar los inconvenientes de las técnicas tradicionales. Una copula es una función que representa la estructura de dependencia de las variables de estudio, y permite obtener la distribución de frecuencia multivariada de dichas variables mediante sus distribuciones marginales, sin importar el tipo de distribución marginal utilizada. La estimación de periodos de retorno multivariados, y por lo tanto, de cuantiles multivariados, también se facilita debido a la manera en la que las cópulas están formuladas. La presente tesis doctoral busca proporcionar metodologías que mejoren las técnicas tradicionales usadas por profesionales para estimar cuantiles de avenida más adecuados para el diseño y la gestión de presas, así como para la evaluación del riesgo de avenida, mediante análisis de frecuencia de avenidas bivariados basados en cópulas. Las variables consideradas para ello son el caudal punta y el volumen del hidrograma. Con el objetivo de llevar a cabo un estudio completo, la presente investigación abarca: (i) el análisis de frecuencia de avenidas local bivariado centrado en examinar y comparar los periodos de retorno teóricos basados en la probabilidad natural de ocurrencia de una avenida, con el periodo de retorno asociado al riesgo de sobrevertido de la presa bajo análisis, con el fin de proporcionar cuantiles en una estación de aforo determinada; (ii) la extensión del enfoque local al regional, proporcionando un procedimiento completo para llevar a cabo un análisis de frecuencia de avenidas regional bivariado para proporcionar cuantiles en estaciones sin aforar o para mejorar la estimación de dichos cuantiles en estaciones aforadas; (iii) el uso de cópulas para investigar tendencias bivariadas en avenidas debido al aumento de los niveles de urbanización en una cuenca; y (iv) la extensión de series de avenida observadas mediante la combinación de los beneficios de un modelo basado en cópulas y de un modelo hidrometeorológico. Accurate design flood estimates associated with high return periods are necessary to design and manage hydraulic structures such as dams. In practice, the estimate of such quantiles is usually done via univariate flood frequency analyses, mostly based on the study of peak flows. Nevertheless, the nature of floods is multivariate, being essential to consider representative flood characteristics, such as flood peak, hydrograph volume and hydrograph duration to carry out an appropriate analysis; especially when the inflow peak is transformed into a different outflow peak during the routing process in a reservoir or floodplain. Multivariate flood frequency analyses have been traditionally performed by using standard bivariate distributions to model correlated variables, yet they entail some shortcomings such as the need of using the same kind of marginal distribution for all variables and the assumption of a linear dependence relation between them. Recently, the use of copulas has been extended in hydrology because of their benefits regarding dealing with the multivariate context, as they overcome the drawbacks of the traditional approach. A copula is a function that represents the dependence structure of the studied variables, and allows obtaining the multivariate frequency distribution of them by using their marginal distributions, regardless of the kind of marginal distributions considered. The estimate of multivariate return periods, and therefore multivariate quantiles, is also facilitated by the way in which copulas are formulated. The present doctoral thesis seeks to provide methodologies that improve traditional techniques used by practitioners, in order to estimate more appropriate flood quantiles for dam design, dam management and flood risk assessment, through bivariate flood frequency analyses based on the copula approach. The flood variables considered for that goal are peak flow and hydrograph volume. In order to accomplish a complete study, the present research addresses: (i) a bivariate local flood frequency analysis focused on examining and comparing theoretical return periods based on the natural probability of occurrence of a flood, with the return period associated with the risk of dam overtopping, to estimate quantiles at a given gauged site; (ii) the extension of the local to the regional approach, supplying a complete procedure for performing a bivariate regional flood frequency analysis to either estimate quantiles at ungauged sites or improve at-site estimates at gauged sites; (iii) the use of copulas to investigate bivariate flood trends due to increasing urbanisation levels in a catchment; and (iv) the extension of observed flood series by combining the benefits of a copula-based model and a hydro-meteorological model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard variance components method for mapping quantitative trait loci is derived on the assumption of normality. Unsurprisingly, statistical tests based on this method do not perform so well if this assumption is not satisfied. We use the statistical concept of copulas to relax the assumption of normality and derive a test that can perform well under any distribution of the continuous trait. In particular, we discuss bivariate normal copulas in the context of sib-pair studies. Our approach is illustrated by a linkage analysis of lipoprotein(a) levels, whose distribution is highly skewed. We demonstrate that the asymptotic critical levels of the test can still be calculated using the interval mapping approach. The new method can be extended to more general pedigrees and multivariate phenotypes in a similar way as the original variance components method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pervasive and puzzling feature of banks’ Value-at-Risk (VaR) is its abnormally high level, which leads to excessive regulatory capital. A possible explanation for the tendency of commercial banks to overstate their VaR is that they incompletely account for the diversification effect among broad risk categories (e.g., equity, interest rate, commodity, credit spread, and foreign exchange). By underestimating the diversification effect, bank’s proprietary VaR models produce overly prudent market risk assessments. In this paper, we examine empirically the validity of this hypothesis using actual VaR data from major US commercial banks. In contrast to the VaR diversification hypothesis, we find that US banks show no sign of systematic underestimation of the diversification effect. In particular, diversification effects used by banks is very close to (and quite often larger than) our empirical diversification estimates. A direct implication of this finding is that individual VaRs for each broad risk category, just like aggregate VaRs, are biased risk assessments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.