874 resultados para antiparasitic agent
Resumo:
The antiparasitic and antifungal activities of nine amphibian skin secretions were studied in different in vitro models. Seven secretions presented a considerable antiprotozoan activity and one showed promising results against Candida sp. These results can be the basis for the development of new drugs, especially for neglected parasitic diseases. © 2007 Bentham Science Publishers Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
From the seeds of Virola surinamensis, which were collected near Altamira and near Maraba, Para State, Brazil, the following substances were isolated by chromatographic techniques: two dibenzylbutanediol lignans, dihydrocubebin and the new dihydrocubebin monolaurate, two furofuran lignans, sesamin and asarinin, three dibenzylbutyrolactol lignans, cubebin, β-O- methylcubebin and α-O-methylcubebin, one dibenzylbutyrolactone lignan, hinokinin, one aryltetralin neolignan, galbulin, two tetrahydrofuran neolignans, galgravin and the new 4'-hydroxy-3'-methoxy-3,4-methylenedioxy- 8.8',7.O.7'-neolignan, one flavone, tithonine, one isoflavone, irisolidone, and two new polyketides, 3-hydroxy-1-(15-phenylpentadecanoyl)-2,6- cyclohexanedione and 1-(5-phenylpentanoyl)-2,6-cyclohexanedione. Different chemical constitutions of the fruits from the two localities were observed.
Resumo:
The increase in incidence of infectious diseases worldwide, particularly in developing countries, is worrying. Each year, 14 million people are killed by infectious diseases, mainly HIV/AIDS, respiratory infections, malaria and tuberculosis. Despite the great burden in the poor countries, drug discovery to treat tropical diseases has come to a standstill. There is no interest by the pharmaceutical industry in drug development against the major diseases of the poor countries, since the financial return cannot be guaranteed. This has created an urgent need for new therapeutics to neglected diseases. A possible approach has been the exploitation of the inhibition of unique targets, vital to the pathogen such as the shikimate pathway enzymes, which are present in bacteria, fungi and apicomplexan parasites but are absent in mammals. The chorismate synthase (CS) catalyses the seventh step in this pathway, the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. The strict requirement for a reduced flavin mononucleotide and the anti 1,4 elimination are both unusual aspects which make CS reaction unique among flavin-dependent enzymes, representing an important target for the chemotherapeutic agents development. In this review we present the main biochemical features of CS from bacterial and fungal sources and their difference from the apicomplexan CS. The CS mechanisms proposed are discussed and compared with structural data. The CS structures of some organisms are compared and their distinct features analyzed. Some known CS inhibitors are presented and the main characteristics are discussed. The structural and kinetics data reviewed here can be useful for the design of inhibitors. © 2007 Bentham Science Publishers Ltd.
Resumo:
EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.
Resumo:
Autoimmune bullous dermatoses are diseases in which blisters and vesicles are the primary and fundamental types of skin lesion. Their classification is based on the location of the blister: intraepidermal and subepidermal. Patients produce autoantibodies against self-specific structures of the skin detectable by immunofluorescence techniques, immunoblotting and ELISA. Recent advances in molecular and cellular biology have brought to knowledge these self-antigens, against which patients are sensitized, and which are found in epidermis or in the dermo-epidermal junction. These are low incidence, but high morbidity diseases that may be fatal. The aim of this article is to review and describe the progress of four autoimmune vesiculobullous disorders: endemic pemphigus foliaceous (wild fire), pemphigus vulgaris, bullous pemphigoid and dermatitis herpetiformis. ©2009 by Anais Brasileiros de Dermatologia.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
The aim of this study was to determine the no-observable-adverse-effect concentration (NOAEC) for trichlorfon, an antiparasitic agent used in aquaculture, in Piractus mesopotamicus (pacu) using acetylcholinesterase (AChE) activity as an end point. Fish were exposed 24 h/d for 15 d to different concentrations of trichlorfon in tanks of water for which a curve of dissipation was previously determined. Analysis of trichlorfon in water and fish plasma using gas chromatography with electron capture detection (GC-ECD) enabled measurement of limit of detection (LOD) and limit of quantification (LOQ), respectively, to be 3 and 10 ppb. Thirty-six hours after trichlorfon dilution in water, the concentration was below the LOD, and data showed that plasma concentrations did not exceed the LOQ. Apart from the 6.25 g/L, all concentrations of trichlorfon significantly inhibited plasma and brain AChE activity compared to controls. The AChE activity levels returned to control values in 7 d. These data may be useful to determine the concentration of trichlorfon that destroys parasites without producing adverse effects in fish.
Resumo:
A novel fungal metabolite, apicidin [cyclo(N-O-methyl-l-tryptophanyl-l-isoleucinyl-d-pipecolinyl-l-2-amino-8-oxodecanoyl)], that exhibits potent, broad spectrum antiprotozoal activity in vitro against Apicomplexan parasites has been identified. It is also orally and parenterally active in vivo against Plasmodium berghei malaria in mice. Many Apicomplexan parasites cause serious, life-threatening human and animal diseases, such as malaria, cryptosporidiosis, toxoplasmosis, and coccidiosis, and new therapeutic agents are urgently needed. Apicidin’s antiparasitic activity appears to be due to low nanomolar inhibition of Apicomplexan histone deacetylase (HDA), which induces hyperacetylation of histones in treated parasites. The acetylation–deacetylation of histones is a thought to play a central role in transcriptional control in eukaryotic cells. Other known HDA inhibitors were also evaluated and found to possess antiparasitic activity, suggesting that HDA is an attractive target for the development of novel antiparasitic agents.